domenica 30 luglio 2023

Ophcrack per recuperare password Windows XP

Il problema e' seguente: recuperare la password da un vetusto PC con XP senza pero' resettarla

Soluzione : usare Ophcrack, un live CD linux con il sofo software per recuperare le password dagli has

Per prima cosa si deve indicare dove sono le tabelle. Se si effettua il download con le tabella gia' caricate esse si trovano in /media/ophcrack


Dopo di cio' si deve indicare dove si trova il file delle password che e'  in Windows/system/config

Sul mio calcolatore le passwords erano di 7 lettere ed il sistema ha impiegato pochi minuti per decrittarle 





giovedì 27 luglio 2023

Aruco terrestrial spotting scope

Aggiornamento: ho sostituio il Meade con il Celestron da viaggio da 70 mm. L'errore di standard deviation a 50 m e' stimato intorno al 0.6% della distanza (quindi 30 cm). Comincia a non valere piu' la pena di lavorarci sopra



Volevo vedere se era possibile usare Aruco Tags mediante telescopio (o meglio spotting scope terrestre) 

I modelli in vendita non hanno l'oculare rimuovibile (sono venduti per uso di tiro al bersaglio o bird watching) ed ho preso il mio Meade AC 70/350 ETX-70 GoTo, un rifrattore da viaggio che non uso quasi mai per la mancanza del puntatore,ed una SVBony 105



A 50 m un tag aruco da 10 cm occupa circa 120x120 pixels


per acquisire in automatico ho utlizzato i comandi sottostanti .Da notare che il SVBony 105 esce in YUYV e non RGB 


v4l2-ctl -c exposure_auto=0

sleep 10

fswebcam -r 1920x1080 --jpeg 95 -D 1 --no-banner --device /dev/video2 --skip 50 --loop 10 -p YUYV --save pic%Y-%m-%d_%H:%M:%S.jpg


giusto per confronto lo stesso bersaglio ripreso da una Canon 450D con tele da 300



sabato 22 luglio 2023

Aruco vs Apriltag condizioni reali

Aggiornamento:

Dopo aver provato un po' di tutto per correggere i dati ho scoperto che le immagini originali non sono state riprese in modo corretto. La camera satura in alcuni condizioni di luce come si vede dai due esempi sottostanti rendendo inutile l'elaborazione





Prova comparativa per misuare distanze tramite April ed Aruco tag in condizioni reali 

Lo scopo e' quello di verificare la ripetibilita' delle misure di distanza mediante tag a condizioni di luce variabile e per questo sono state effettuate misure con i tag in posizione stazionaria

E' stata impiegata una camera di sorveglianza a fuoco fisso con acquisizione ogni 10 minuti anche di notte grazie all'illuminazione ad infrarossi

I tag sono stati di dimensione di 25 cm in formato 4x4 per Aruco e 36h11 per gli Apriltag


Per determinare la distanza sono state impiegate le librerie OpenCV su Python per agli Aruco Tags mentre la libreria Apriltags3 in C++



in generale gli Apriltag risultano meglio individuabili rispetto agli Aruco tag. Di 430 immagini totali gli Apriltags sono stati individuati al 99% ad una distanza di 6 m mentre gli Aruco tag hanno prestazioni simili ma solo sulla breve distanza (4 m)


Aruco

l'elaborazione dei tag aruco indica che l'algoritmo genera molti outliers che possono essere facilmente separati dai dati corretti












Provando a smussare i dati con una media mobile a finetra oraria la situazione non migliora e si osserva un comportamento legato all'illuminazione che si ritrovera' anche dopo con gli April Tags 



Apriltag

Dall'analisi dei grafici si vede che le condizioni di illuminazione condizionano fortemente la misura della distanza mediante Apriltag. Le misure piu' stabili sono di notte quando e' attiva l'illuminazione dei led ad infrarossi

Rispetto ad Aruco ci sono molti meno outliers ed i dati sono meno rumorosi



In queste condizioni e' stato registrato un errore di standard devitation pari a 0.96% della distanza per il tag a 6.5m e dell'1% per il tag a 10 m

Se si plottano i dati a parita' di ora del giorno si vede ancora piu' chiaramente come la presenza di ombra influenza il dato di distanza

Se si fa la differenza tra le due curve l'errore scende al 0.18%


Un sistema per rimuovere l'effetto dell'illuminazione e' di correlare i dati dei due tag (sono vicini quindi sono illuminati in modo comparabile)


Per cercare di risolvere il problema delle differenti illuminazione ho provato ad elaborare le immagini mediante l'algoritmo presentato in questo articolo (Illumination Invariant Imaging: Applications in Robust Vision-based Localisation, Mapping and Classification for Autonomous Vehicles)

In estrema sintesi l'algoritmo appiattisce una immagine RGB e cerca di annullare gli effetti di differente illuminaizone (questo algoritmo funziona solo sulle immagini diurne perche' la camera di notte acquisisce a scala di grigi)


Per le elaborazioni ho usato questo progetto su Github.  (ho dovuto fare una leggere modifica perche' le immagini della camera avevano dei valori zero che ovviamente non potevano essere usati in un logaritmo)

import cv2
import numpy as np
import os
from argparse import ArgumentParser
from multiprocessing import Pool

ROBOTCAR_ALPHA = 0.4642


def transform(im):
# Assumes image is RGB-ordered
image = cv2.imread(read_dir + "/" + im, cv2.IMREAD_UNCHANGED)
r, g, b = image[:, :, 0], image[:, :, 1], image[:, :, 2]


// per eliminare gli eventuali zeri dalla matrice
r = np.where(r==0, 0.1, r)
g = np.where(g==0, 0.1, g)
b = np.where(b==0, 0.1, b)
ii_image = 0.5 + np.log(g) - ROBOTCAR_ALPHA*np.log(b) - (1-ROBOTCAR_ALPHA)*np.log(r)

# Lastly, convert from float to uint8 space
max_ii = np.max(ii_image)
min_ii = np.min(ii_image)
uii = np.uint8((ii_image - min_ii) * 256 / (max_ii - min_ii))
ii_name = write_dir + "/" + im
cv2.imwrite(ii_name, uii)
return ii_image


def transform_loop(directory):
image_names = os.listdir(directory)

# Spawn 4 worker processes to transform in parallel
p = Pool(4)
p.map(transform, image_names)


if __name__ == '__main__':
parser = ArgumentParser(
description=
'Transform images in a directory into lighting invariant color space')
parser.add_argument('--read-dir', action="store", type=str, required=True)
parser.add_argument('--write-dir', action="store", type=str, required=True)
args = parser.parse_args()

global read_dir, write_dir
read_dir = args.read_dir
write_dir = args.write_dir
transform_loop(read_dir)



dopo l'applicazione della elaborazione l'algoritmo di riconoscimento dei tag risulta molto piu' in difficolta' nel riconoscere i taf e sono state estratte solo 71 misure di distanza del tag1 e 16 misure del tag 2









Aggiornamento:

Frugando dentro al codice della demo di Apritag3 c'e' un porzione di codice che non puo' mai essere eseguito (c'e' un IF sempre True) e la condizione Falsa e' appunto l'algoritmo di Illumination Invariant 

Basta modificare la riga 156 per esempio aggiungendo un NOT si introduce il calcolo


questi sono i grafici risultanti dopo l'algoritmo. Si e' oersa la ritmicita' dell'illuminazione ma si e' persa anche la capacita' di riconoscere i tag nelle immagini trattate (per il tag 1 circa il 50%, tag2 decisamente peggio)



L'errore percentuale delle standard deviation e' pari a 1.79% per il tag1 e 1.08% per il tag 2
La differenza risiede nel valore del parametro utilizzato nell'elaborazione delle immagini




giovedì 20 luglio 2023

Files in TI-89

 TiOs non ha un vero e proprio file system ma permette comunque di salvare file dati sul calcolatore

Per esempio si puo' usare il programma TiGraph per generare delle note

Il file non sara' identificato dal nome ma dalla "variabile" associata



Una volta trasferito il file sulla calcolatrice sono tilp2 si puo' aprire la nota con il text editor

E' possibile usare dei folder ma in questo caso si e' usata la root che in TiOs viene definita main ed il file compare automaticamente aprendo la finestra del menu variabile




altirmenti si possono generare dei file custom da codice. La cosa interessante e' che i file su TiOs non sono compatibili con la versione PC. Per esempio un semplice file testo ha un header ed un tag di chiusura (OTH_TAG) 

//https://technoplaza.net/programming/lesson10.php
#define USE_TI89
#include <stdlib.h>
#include <stdio.h>
#include <estack.h>

int _main(void)
{
const int dimx = 50, dimy = 50;

FILE *fp = fopen ("example2", "wb");

fprintf(fp, "P6\n%d %d\n255\n", dimx, dimy);

fputs("luca",fp);
fputc (0, fp);
fputs ("HSC", fp);
fputc (0, fp);
fputc (OTH_TAG, fp);
fclose (fp);
return 0;
}




TI-89 scrittura diretta in memoria video

 Oltre a poter usare un buffer per generare grafica si puo' avere anche la scrittura diretta in memoria video sulla TI-89 puntando all'indirizzo 0x4C00





#define USE_TI89
#define SAVE_SCREEN // Save/Restore LCD Contents


#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <kbd.h>

char * reale = (char *) 0x4C00;
int c;

void setpixel(int x, int y)
{
int yc = 30*y;
int xc = (int)floor(x/8);
int xd = 1<<(7-(x % 8));
reale[yc+xc]=xd;
}

void pulisci(void)
{
for (c=0;c<3840;c++)
{
reale[c]=0;
}
}

int _main(void)
{
pulisci();
for (c=0;c<80;c++){
setpixel(c,c);
}
ngetchx();
return 0;
}



martedì 18 luglio 2023

Schermo virtuale su TI-89

Una delle cose divertenti con la TI-89 e' di avere il controllo completo dell'hardware con l'accesso diretto alla memoria video


La memoria dello schermo LCD inizia a 0x4C00

Si puo' fare puntare lo schermo virtuale ad una zona di memoria e poterla trattare con i comandi grafici (ogni byte di memoria contiene l'informazione di 8 pixels) 

dopo aver creato il buffer video si puo' copiarlo sulla vera memoria video per mostrare il risultato

attenzione: nonostante la TI-89 abbia uno schermo di dimensione 160x100 il codice funziona solo con le dimensione di 240x128 ovvero le dimensioni della TI-92 (la sorella maggiore)

#define USE_TI89
#define SAVE_SCREEN // Save/Restore LCD Contents


#include <stdlib.h>
#include <stdio.h>
#include <graph.h>
#include <kbd.h>
#include <string.h>

int _main(void)
{

char virtual[LCD_SIZE];
//PortSet ((void *) 0x4C00, 239, 127);

int i;
for (i=1;i<50;i++)
{
DrawPix(i,i,A_NORMAL);
}
ngetchx();
memcpy (LCD_MEM, virtual, LCD_SIZE);
ngetchx();
PortRestore();
return 0;
}

domenica 16 luglio 2023

Apriltag 3 48h12

Per vedere se c'era un motivo per scegliere una diversa famiglia di Apriltag rispetto al 36h11 ho provato la famiglia consigliata 48h12 (che rientra nelle custom) 

La standard deviation su circa 200 misure (un giorno) e' stata dello 0.25% (1.15 cm ad una distanza di 4.6 m) con un lievissimo miglioramento rispetto alle prove precedenti







ps : per usare la famiglia Custom48h12 si deve modificare il codice del file di esempio



venerdì 14 luglio 2023

Lora32 come scheda di rete

Un po ' di tempo fa avevo sperimentato l'uso del protocollo AX25 usando Lora  con in moduli SX1278

Questa volta provo ad usare Lora32 Lilygo con il software di RNode

Per prima cosa si deve impostare un ambiente virtuale in Python (in Debian non permette di fare pip al di fuori di in venv) per installare 

pip install rns



rnodeconf --autoinstall
(per la Lilygo Lora32 che ho usato io l'opzione della scheda e' la numero 3)

rnodeconf /dev/ttyuUSB0 -T --freq 868000000 --bw 125000 --txp 2 --sf 7 --cr 5

(qui si impostano sulle schede le impostazione di trasmissione Lora)



per configurare il dispositivo come una scheda di rete wireless si usa tncattach 

tncattach /dev/ttyUSB0 115200 -d --noipv6 --noup --mtu 572

La configurazione puoà essere come punto punto 

ifconfig tnc0 10.0.0.1 pointopoint 10.0.0.2
(ovviamente scambiando gli indirizzi sulle due schede)

oppure multi punto (ma e' decisamente piu' lenta

tncattach /dev/ttyUSB0 115200 -d -e --noipv6 --mtu 554 --ipv4 10.91.0.1/24

per le prove che ho fatto il sistema e' lento ma in ogni caso in una punto punto si riesce ad interagire in modo discreto con una sessione SSH

TI-89 Mandelbrot

 Ho scoperto per puro caso che le calcolatrici Texas Instruments TI-89 (e parenti) hanno al proprio interno un processore della classe 68000 e che possono essere programmate, oltre che in TI-Basic, anche in C...proviamo un po'



Il compilatore C che ho usato si trova a questo link https://github.com/debrouxl/gcc4ti

esistono versioni meno aggiornate ma non sono cosi' complete

Per compilare si va in /trunk/tigcc-linux/scripts e si lancia ./Install

si impostano poi le variabili di ambiente

export TIGCC=/usr/local/share/gcc4ti/

export PATH=$PATH:$TIGCC/bin

il codice di questo post e' ripreso dal precedente post 

le differenze sono :

1) la funzione main in TIGCC si chiama _main (underscore main)

2) sono necessari gli include di stdio e kbd anche se di fatto non sono richiamati dal codice


#define USE_TI89 // produce all types of files
//#define USE_TI92PLUS
//#define USE_V200

#include <stdio.h> // standard ANSI C input/output support
#include <kbd.h>
#include <tigcclib.h>

#define FIXEDPT_WBITS 4
#define WIDTH 160
#define HEIGHT 100

#include "fixedptc.h"

void _main(void) {

ClrScr();

int j,k,i;
float test;
fixedpt Re,Im,DRe,DIm;
fixedpt X,Y,DUE;
fixedpt XN,YN,YNN;
fixedpt A,B;


Re = fixedpt_rconst(-2.00390625); //finestra reale tra -2 e +0.5
Im = fixedpt_rconst(-1.205); //finestra immaginaria tra -1.2 e 1.2
DRe = fixedpt_rconst(0.015625); //2.5/160
DIm = fixedpt_rconst(0.024); // 2.4/100
DUE = fixedpt_rconst(2.0);

A = Re;

for (j=0;j<WIDTH;j++)
{
A = fixedpt_add(A,DRe);
B = Im;
for (k=0;k<HEIGHT;k++)
{
B = fixedpt_add(B,DIm);

X = fixedpt_rconst(0.0);
Y = fixedpt_rconst(0.0);

for (i=0;i<=127;i++)
{
XN=fixedpt_sub(fixedpt_mul(X,X),fixedpt_mul(Y,Y))+A; // (x*x) - (y*y) + A
YN=fixedpt_mul(X,Y); // x*y
YNN=fixedpt_mul(DUE,YN); // 2*x*y
YN=YNN + B; // 2*x*y*+B
test = fixedpt_tofloat(fixedpt_mul(XN,XN) + fixedpt_mul(YN,YN)); //(XN*XN)+(YN*YN)
if (test > 4.0)
{
//png.plot(j,k,1.0,1.0,1.0);
if (i%2) DrawPix(j,k,A_NORMAL);
break;
}
X = XN;
Y = YN;
}
}
}
}


tigcc -O2 -o timand timand.c 

il file binario avra' una estensione .89z (nel caso si compile di per TI-92 sara' .92z)

Per il trasferimento dell'eseguibile tramite cavo USB ho usato il programma TILP funzionante su Linux impostando Direct Link



Una volta trasferito il codice sul dispositivo si puo' eseguire digitando il nome del fie per esempio se il nome del file e' timand come se fosse una funzione ...per esempio timand()
In alcuni casi la calcolatrice puo' non mostrare la linea di comando ma le icone..in questo caso si preme il tasto MODE si scrolla in basso fino all'opzione APP Desktop e se seleziona OFF

Se non si vuole usare un dispositivo fisico si puo' usare l'emulatore TIEmu. In questo caso per caricare l'eseguibile e' sufficiente premere il tasto F10 e selezionare il flie .89z







lunedì 10 luglio 2023

Hacking camping wifi

Al campegggio il servizio Wifi era gratuito ma il portale captivo era impostato per un limite di banda dopo la quale non potevi navigare fino al giorno successivo
la soluzione e' stata semplicemente quella di impostare il Mac Address della scheda wireless su Random. Ogni volta che arrivavo al limite di banda consumata mi e' bastato spengere e riaccendere il WiFi per assumere un nuovo Mac Address e continuare a navigare


Eth0 su LuckFox Pico Mini A

 Le schede Luckfox Pico Mini A (a differenza delle sorelle maggiori) non hanno un connettore RJ45 e nonostante i pin da saldare non sembrano...