giovedì 23 maggio 2013

Problema di Eulero 6

La formulazione del sesto problema di Eulero e' il seguente
----------------------------------------------------------

The sum of the squares of the first ten natural numbers is,
12 + 22 + ... + 102 = 385
The square of the sum of the first ten natural numbers is,
(1 + 2 + ... + 10)2 = 552 = 3025
Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 − 385 = 2640.
Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum

----------------------------------------------------------

In questo caso l'algoritmo e' molto piu' banale dei casi precedenti ma c'e' sempre da trarre un insegnamento. In C++ la variabili vanno sempre inizializzate

-----------------------------------------------------------

#include <iostream>

using namespace std;

int main()
{
    double somma_quadrati=0;
    int somma=0;
    for (int t=1;t<=100;t++)
    {
        somma = somma + t;
        somma_quadrati = somma_quadrati + (t*t);
        cout << t << endl;
    }
    double quadrato_somma = somma * somma;
    cout.precision(15);
    cout << fixed << (quadrato_somma-somma_quadrati) << endl;

    return 0;
}

-----------------------------------------------------------
La soluzione e' 25164150 con un tempo di calcolo inferiore al decimo di secondo
E' abbastanza chiaro che per ottenere la somma dei numeri inferiori a 100 esiste una formula da Gauss ma visto che comunque un ciclo era previsto, tanto vale sfruttarlo fino in fondo