Visualizzazione post con etichetta SciPy. Mostra tutti i post
Visualizzazione post con etichetta SciPy. Mostra tutti i post

martedì 30 aprile 2024

Ricampionare un segnale con SciPy

Un sistema rapido per ricampionare dati con spaziatura non omogenea  usando una curva di interpolazione

 

Dati originali

 

import matplotlib.pyplot as plt
from scipy import interpolate
import numpy as np

x = np.array([1, 2, 5, 10])
y = np.array([1, 4, 25, 100])
fcubic = interpolate.interp1d(x, y,kind='cubic')

xnew = np.arange(1, 10, 0.25)
ynew = fcubic(xnew)
plt.plot(x, y, 'X', xnew, ynew,'bo')
plt.show()
print(x)
print(y)
print(xnew)
print(ynew)

 


da osservare che l'interpolazione avviene tramite una spline cubica per cui su cuspidi non e' detto che il risultato sia accettabile. SciPy offre altre opzioni per la curva di interpolazione

 

Pandas su serie tempo

Problema: hai un csv che riporta una serie tempo datetime/valore di un sensore Effettuare calcoli, ordina le righe, ricampiona il passo temp...