Visualizzazione post con etichetta RasterIO. Mostra tutti i post
Visualizzazione post con etichetta RasterIO. Mostra tutti i post

sabato 6 maggio 2023

RGB change detection con RasterIO

 Un semplice metodo per avere il change detection da una immagine RGB e' la formula seguente

 


 che non e' altro che la distanza euclidea tra i due punti rappresentativi delle immagini nello spazio delle bande (quindi puo' essere scalato anche su n-bande)

 


 utilizzando la libreria RasterIO si puo' scrivere il codice seguente

 

import numpy as np
import rasterio
from rasterio.plot import show_hist,show

immagine1 = "cd1.tif"
immagine2 = "cd2.tif"


im1 = rasterio.open(immagine1)
im2 = rasterio.open(immagine2)

im1_b2 = im1.read(1).astype(float)
im1_b3 = im1.read(2).astype(float)
im1_b4 = im1.read(3).astype(float)


im2_b2 = im2.read(1).astype(float)
im2_b3 = im2.read(2).astype(float)
im2_b4 = im2.read(3).astype(float)

np.seterr(divide = "ignore", invalid = "ignore")

change_det = np.zeros(im1_b2.shape, dtype=rasterio.float32)


change_det = np.sqrt(np.power(im1_b2-im2_b2,2)+np.power(im1_b3-im2_b3,2)+np.power(im1_b4-im2_b4,2))


#print("Change Det Max " + str(np.max(change_det)))
#print("Change Det Min " + str(np.min(change_det)))

#show(change_det)

#show_hist(change_det)
kwargs = im1.meta
kwargs.update(driver='GTiff',dtype=rasterio.float32,count=1)

cd_image = rasterio.open('CD.tiff','w',**kwargs )
cd_image.write(change_det,1)
cd_image.close()

 

lunedì 14 novembre 2022

Mascherare le nuvole in Sentinel 2

Nei dati Sentinel 2 e' contenuta anche in QI_DATA/MSK_CLDPRB_20m.jp2 una maschera di probabilita' che il pixel sia relativo ad una nuova (con valore di probabilita' crescente)




Per fare una maschera ho provato a settare i valori maggiori di 50 a zero ed i valori inferiori a 1 per poi moltiplicare i valori della banda



import numpy as np
import rasterio
from rasterio import plot

band4 = rasterio.open('b4.jp2', driver='JP2OpenJPEG')
mask = rasterio.open('mask.jp2', driver='JP2OpenJPEG')

band4_ = band4.read(1)
mask_ = mask.read(1)

mask_[mask_ <= 50] = 1
mask_[mask_ > 50] = 0


ris = np.zeros(band4.shape, dtype=rasterio.uint32)
ris =band4_*mask_

kwargs = band4.meta
kwargs.update(driver='GTiff',dtype=rasterio.uint16,count=1)

maskimage = rasterio.open('maschera0_1.tiff','w',**kwargs )
maskimage.write(mask_,1)
maskimage.close()

b4mask = rasterio.open('b4mask.tiff','w', **kwargs)
b4mask.write(ris,1)
b4mask.close()

sabato 12 novembre 2022

NDVI Sentinel 2 con RasterIO

il formato di output e' stato modificato in Geotiff perche' JP2 non permette di salvare in float32 


import numpy as np
import rasterio
from rasterio import plot

imagePath = './immagini/'
band4 = rasterio.open(imagePath+'B4.jp2', driver='JP2OpenJPEG')
band8 = rasterio.open(imagePath+'B8.jp2', driver='JP2OpenJPEG')

band4s = band4.read(1)
band8s = band8.read(1)

RED=band4s.astype(float)
NIR=band8s.astype(float)
np.seterr(divide = "ignore", invalid = "ignore")

ndvi = np.zeros(RED.shape, dtype=rasterio.float32)
ndvi = (NIR-RED) / (NIR+RED)


ndvi[ndvi > 1] = np.nan
ndvi[ndvi < -1] = np.nan

kwargs = band4.meta
kwargs.update(driver='GTiff',dtype=rasterio.float32,count=1)

ndviimage = rasterio.open('./immagini/SentinelNDVI2.tiff','w',**kwargs )
ndviimage.write(ndvi,1)
ndviimage.close()


Truecolor Sentinel2 con RasterIO

Truecolor da dati Sentinel 2 usando RasterIO 


L'immagine e' stata corretta nel contrasto per renderla piu' leggibile


import rasterio
from rasterio import plot

imagePath = './immagini/'
band2 = rasterio.open(imagePath+'B2.jp2', driver='JP2OpenJPEG') #blue
band3 = rasterio.open(imagePath+'B3.jp2', driver='JP2OpenJPEG') #green
band4 = rasterio.open(imagePath+'B4.jp2', driver='JP2OpenJPEG') #red

band2s = band2.read(1)
band3s = band3.read(1)
band4s = band4.read(1)

bandg2=2.5*(band2s.astype(float))
bandg3=2.5*(band3s.astype(float))
bandg4=2.5*(band4s.astype(float))

trueColor = rasterio.open('./immagini/SentinelTrueColor2.tiff','w',driver='Gtiff',
width=band4.width, height=band4.height,
count=3,
crs=band4.crs,
transform=band4.transform,
dtype=band4.dtypes[0]
)
trueColor.write(bandg2,3) #blue
trueColor.write(bandg3,2) #green
trueColor.write(bandg4,1) #red
trueColor.close()

Pandas su serie tempo

Problema: hai un csv che riporta una serie tempo datetime/valore di un sensore Effettuare calcoli, ordina le righe, ricampiona il passo temp...