Visualizzazione post con etichetta CNN. Mostra tutti i post
Visualizzazione post con etichetta CNN. Mostra tutti i post

mercoledì 8 gennaio 2020

Esempio Retraining an image classifier

Ho trovato un esempio completo per il retraining di un classificatore di immagini a questo link

https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/tf2_image_retraining.ipynb

Si tratta di un Jupyter Notebook in cui si puo' attivare data augmentation e fine tuning e si puo' scegliere tra MobileNet v2 e Inception v3. I dati presentano gia' uno split con il 20% destinato alla validazione e shuffle del training, shuffle sul training, dropout

Girando su Colab si ha a disposizione una istanza con 12 Gb di Ram ed una GPU da 16 Gb di ram.
Il modello viene salvato nel formato .pb ma puo' essere convertito in formato .tflite con una verifica di quanto si perda in prestazioni utilizzando il formato di TensorFlow Lite

per attivare ogni singola cella di codice si usa CTRL+Enter



il file puo' essere visualizzato, una volta scaricato dal proprio GDrive, con il comando

saved_model_cli show --dir fora2/ --all

----------------------------------------------------------------------------
MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs:

signature_def['__saved_model_init_op']:
  The given SavedModel SignatureDef contains the following input(s):
  The given SavedModel SignatureDef contains the following output(s):
    outputs['__saved_model_init_op'] tensor_info:
        dtype: DT_INVALID
        shape: unknown_rank
        name: NoOp
  Method name is: 

signature_def['serving_default']:
  The given SavedModel SignatureDef contains the following input(s):
    inputs['input_1'] tensor_info:
        dtype: DT_FLOAT
        shape: (-1, 224, 224, 3)
        name: serving_default_input_1:0
  The given SavedModel SignatureDef contains the following output(s):
    outputs['output_1'] tensor_info:
        dtype: DT_FLOAT
        shape: (-1, 5)
        name: StatefulPartitionedCall:0
  Method name is: tensorflow/serving/predict



Debugger integrato ESP32S3

Aggiornamento In realta' il Jtag USB funziona anche sui moduli cinesi Il problema risiede  nell'ID USB della porta Jtag. Nel modulo...