Visualizzazione post con etichetta monocular depth. Mostra tutti i post
Visualizzazione post con etichetta monocular depth. Mostra tutti i post

martedì 21 dicembre 2021

Boosting Monocular Depth test

Partendo dal post precedente ho provato questo link github 

https://github.com/compphoto/BoostingMonocularDepth

i risultati sono prossimi incredibili ma non sono riuscito al momento ad estrarre la matrice numerica

E' comodo per i test utilizzare il seguente notebook da importare su Colab























Mappa di profondita' da immagini monoculari

Fino a poco tempo fa per estrarre dati tridimensionali da una immagine fotografica era possibile utilizzare solo immagine stereoscopiche..successivamente e' stato possibile ottenere mappe di profondita' con i laser a luce strutturata ... in ogni caso era necessario utilizzare attrezzatura specifica

Leggendo gli esempi di Keras  ho trovato questo esempio Monocular Depth Estimation che permette da una normale immagine di stimare la profondita' degli oggetti ripresi utilizzando una rete neurale CNN

Immagine originale


Mappa di profondita' generata da Midas (midas_v21)


Mappa di profondita' generata da Midas (complete)


Nonostante diverse prove su Colab il notebook entrava in errore (ho avuto solo un successo) con valori di Nan in loss e val_loss e pensavo di abbandonare quando ho trovato MiDaS

Per prima cosa si deve impostare un Conda Env  (conda activate env_pytorch) con 

conda install pytorch torchvision opencv 
pip install timm

In seguito si copiano di file dei modelli Large e Hybrid nella directory weights (i modelli midas_v21 e midas_v21_small vengnono scaricati in modo automatico)

Si inseriscono poi nella dir input le immagini da processare ed i risultati si troveranno nella dir outpu

Su Apple M1 tutto ha funzionato. Su Ubuntu LTS 18.04 hanno funzionato solo i modello midas_v21

Ho provato ad usare anche il docker senza fortuna

La cosa interessante non e' il PNG che viene generato ma il file .PFM all'interno del quale si trovano in formato binario i valori di distanza in formato float32 (nel PNG ci sono solo 255 classi). Avendo un punto di verita'nell'immagine tali valori possono essere riscalati per ottenere delle distanze metriche

Per leggere il file PFM si puo' utilizzare la funzione read_pfm contenuta nel file utils.py 

======================================================

import utils
(data,scale) = utils.read_pfm('luca.pfm')
print(data)
print(scale)

Sono presenti anche le dir per mobile Android/IOS e Tensorflow ma al momento non sono riuscito a compilarle

Per alcuni test rapidi si puo' utilizzare il notebook python

Pandas su serie tempo

Problema: hai un csv che riporta una serie tempo datetime/valore di un sensore Effettuare calcoli, ordina le righe, ricampiona il passo temp...