import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler, StandardScaler
import warnings
from scipy import stats
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import Sequential, layers, callbacks
from tensorflow.keras.layers import Dense, LSTM, Dropout, GRU, Bidirectional
tf.random.set_seed(1234)
print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU')))
df = pd.read_csv("est2.csv", parse_dates = ["Date"])
# Define a function to draw time_series plot
def timeseries (x_axis, y_axis, x_label):
plt.figure(figsize = (10, 6))
plt.plot(x_axis, y_axis, color ="black")
plt.xlabel(x_label, {'fontsize': 12})
plt.ylabel('Est', {'fontsize': 12})
plt.show()
print(df)
timeseries(df.index, df['Est'], 'Time (day)')
df = df.drop('Date', axis = 1)
train_size = int(len(df)*0.8)
train_data = df.iloc[:train_size]
test_data = df.iloc[train_size:]
scaler = MinMaxScaler().fit(train_data)
train_scaled = scaler.transform(train_data)
test_scaled = scaler.transform(test_data)
def create_dataset (X, look_back = 1):
Xs, ys = [], []
for i in range(len(X)-look_back):
v = X[i:i+look_back]
Xs.append(v)
ys.append(X[i+look_back])
return np.array(Xs), np.array(ys)
LOOK_BACK = 300
X_train, y_train = create_dataset(train_scaled,LOOK_BACK)
X_test, y_test = create_dataset(test_scaled,LOOK_BACK)
# Print data shape
print("X_train.shape: ", X_train.shape)
print("y_train.shape: ", y_train.shape)
print("X_test.shape: ", X_test.shape)
print("y_test.shape: ", y_test.shape)
# Create GRU model
def create_gru(units):
model = Sequential()
# Input layer
model.add(GRU (units = units, return_sequences = True,
input_shape = [X_train.shape[1], X_train.shape[2]]))
model.add(Dropout(0.2))
# Hidden layer
model.add(GRU(units = units))
model.add(Dropout(0.2))
model.add(Dense(units = 1))
#Compile model
model.compile(optimizer='adam',loss='mse')
return model
model_gru = create_gru(300)
def fit_model(model):
early_stop = keras.callbacks.EarlyStopping(monitor = 'val_loss',patience = 10)
history = model.fit(X_train, y_train, epochs = 5,
validation_split = 0.2,
batch_size = 32, shuffle = False,
callbacks = [early_stop])
return history
history_gru = fit_model(model_gru)
y_test = scaler.inverse_transform(y_test)
y_train = scaler.inverse_transform(y_train)
def plot_loss (history, model_name):
plt.figure(figsize = (10, 6))
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model Train vs Validation Loss for ' + model_name)
plt.ylabel('Loss')
plt.xlabel('epoch')
plt.legend(['Train loss', 'Validation loss'], loc='upper right')
plt.show()
plot_loss (history_gru, 'GRU')
# Make prediction
def prediction(model):
prediction = model.predict(X_test)
prediction = scaler.inverse_transform(prediction)
return prediction
prediction_gru = prediction(model_gru)
# Plot test data vs prediction
def plot_future(prediction, model_name, y_test):
plt.figure(figsize=(10, 6))
range_future = len(prediction)
plt.plot(np.arange(range_future), np.array(y_test), label='Test data')
plt.plot(np.arange(range_future), np.array(prediction),label='Prediction')
plt.title('Test data vs prediction for ' + model_name)
plt.legend(loc='upper left')
plt.xlabel('Time (day)')
plt.ylabel('Est')
plt.show()
plot_future(prediction_gru, 'GRU', y_test)
# bilstm 5 epoch
#model_bilstm.save("bilstm.keras")
model_gru.save("gru.keras")