In un esempio precedente avevo usato il modello .tflite per fare predizione di classificazione immagine.
Il modello e' stato creato da un train di Inception
============================================================
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import sys
import tensorflow as tf
import tensorflow_hub as hub
from keras.models import load_model
model = tf.keras.models.load_model('incept.h5', custom_objects={'KerasLayer':hub.KerasLayer})
#print(model.get_config())
from keras.preprocessing import image
img = image.load_img(sys.argv[1])# , target_size=(299,299,3))
img = image.img_to_array(img)
img = img.reshape((1,) + img.shape)
img = img/255
build_input_shape = img.reshape(-1,299,299,3)
#print (build_input_shape)
img_class=model.predict_classes(img)
print (sys.argv[1])
print(img_class)
Visualizzazione post con etichetta inception. Mostra tutti i post
Visualizzazione post con etichetta inception. Mostra tutti i post
Iscriviti a:
Post (Atom)
Physics informed neural network Fukuzono
Visto che puro ML non funziona per le serie tempo di cui mi sto occupando ed le regressioni basate su formule analitiche mostrano dei limiti...

-
In questo post viene indicato come creare uno scatterplot dinamico basato da dati ripresi da un file csv (nel dettaglio il file csv e' c...
-
La scheda ESP32-2432S028R monta un Esp Dev Module con uno schermo TFT a driver ILI9341 di 320x240 pixels 16 bit colore.Il sito di riferiment...
-
Questo post e' a seguito di quanto gia' visto nella precedente prova Lo scopo e' sempre il solito: creare un sistema che permet...