Per il calcolo e' stata utilizzata la libreria JKalman. Dal pacchetto zip si estrae il file .jar e dalla cartella dist e lo si copia nella cartella /libs del progetto Android. A questo punto si clicca destro sul file .jar in Android Studio e si clicca "Add as Library"
Si aggiunge la classe ripresa da qui
------------------------------------------------------------------
package innocenti.luca.com.camerakit;
import jkalman.JKalman;
import jama.Matrix;
public class KalmanFilter {
private int variables;
private JKalman kalman;
private Matrix s; // state [x, y, dx, dy, dxy] private Matrix c; // corrected state [x, y, dx, dy, dxy] private Matrix m; // measurement [x]
/* * Inicializa el filtro kalman con 2 variables */ public void initialize2() throws Exception{
double dx, dy;
if(variables != 0){
throw new RuntimeException();
}
variables = 2;
kalman = new JKalman(4, 2);
// constant velocity dx = 0.2;
dy = 0.2;
s = new Matrix(4, 1); // state [x, y, dx, dy, dxy] c = new Matrix(4, 1); // corrected state [x, y, dx, dy, dxy]
m = new Matrix(2, 1); // measurement [x] m.set(0, 0, 0);
m.set(1, 0, 0);
// transitions for x, y, dx, dy double[][] tr = { {1, 0, dx, 0},
{0, 1, 0, dy},
{0, 0, 1, 0},
{0, 0, 0, 1} };
kalman.setTransition_matrix(new Matrix(tr));
// 1s somewhere? kalman.setError_cov_post(kalman.getError_cov_post().identity());
}
/* * Aplica Filtro a variables */ public void push(double x,double y) throws Exception{
m.set(0, 0, x);
m.set(1, 0, y);
c = kalman.Correct(m);
s = kalman.Predict();
}
/* * obtiene arreglo con datos filtrados. */ public double[] getKalmanPoint2() throws Exception{
double[] point = new double[2];
point[0] = c.get(0,0);
point[1] = c.get(1,0);
return point;
}
/* * obtiene arreglo con prediccion de punto. */ public double[] getPredict2() throws Exception{
double[] point = new double[2];
point[0] = s.get(0,0);
point[1] = s.get(1,0);
return point;
}
/* * obtiene cantidad de variables del objeto */ public int getNVariables() throws Exception{
return this.variables;
}
}
------------------------------------------------------------------
a questo punto e' sufficiente creare il filtro in OnCreate
kf = new KalmanFilter();
try {
kf.initialize2();
} catch (Exception e) {
e.printStackTrace();
}
si popola poi l'array dei dati e si ottiene il valore filtrato
try {
kf.push(pi,ro);
} catch (Exception e) {
e.printStackTrace();
}
try {
double[] test = kf.getKalmanPoint2();
Log.d("Kalman", Double.toString(Math.toDegrees(test[0]))+ " "+
Double.toString(Math.toDegrees(test[1])) + " " +Math.toDegrees(pi)+ " "+
Math.toDegrees(ro));
} catch (Exception e) {
e.printStackTrace();
}
Nessun commento:
Posta un commento