Ho portatile T430 con scheda NVS 5400 M, una scheda con CUDA Capability 2.1 e Codename Fermi. Il supporto per queste schede e' terminato con Cuda Toolkit 8.0 e quindi non e' banale installare l'ambiente di sviluppo
Per prima cosa ovviamente si devono avere installati i driver proprietari di NVidia da Software&Updates
A questo punto si deve scaricare Cuda ToolKit 8, l'ultimo compatibile con Fermi ma si deve effettuare anche un downgrade di gcc (Cuda Toolkit 8 era compatibile con Ubuntu 16.04(
sudo apt-get install gcc-5 g++-5
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-5 70
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-5 70
sh ./cuda_8.0.61_375.26_linux.run --tar mxvf
sudo apt install libmodule-install-perl
sudo cp InstallUtils.pm /usr/lib/x86_64-linux-gnu/perl-base/
export $PERL5LIB
sh ./cuda_8.0.61_375.26_linux.run --override
sudo rm /usr/lib/x86_64-linux-gnu/perl-base/InstallUtils.pm
Durante l'installazione non si deve installare il driver e si deve accettare l'installazione su piattaforma non supportata
E' conveniente installare anche gli esempi.
Iscriviti a:
Commenti sul post (Atom)
Pandas su serie tempo
Problema: hai un csv che riporta una serie tempo datetime/valore di un sensore Effettuare calcoli, ordina le righe, ricampiona il passo temp...
-
In questo post viene indicato come creare uno scatterplot dinamico basato da dati ripresi da un file csv (nel dettaglio il file csv e' c...
-
La scheda ESP32-2432S028R monta un Esp Dev Module con uno schermo TFT a driver ILI9341 di 320x240 pixels 16 bit colore.Il sito di riferiment...
-
Questo post e' a seguito di quanto gia' visto nella precedente prova Lo scopo e' sempre il solito: creare un sistema che permet...
Nessun commento:
Posta un commento