giovedì 6 febbraio 2020

Conteggio automatico film radon con OpenCV

Per lavoro puo' essere che puo' essere che mi trovi a dover contare delle lastre dei rilevatori di radon e volevo provare a fare qualcosa di mio con OpenCV. Per prova ho preso delle immagini da Google Images e le ho trattate con OpenCV e gli Hough Circles

Immagine non elaborata


Immagine non elaborata con sovrapposizione del riconoscimento e del numero degli eventi

Elabotazione Conteggio 126 eventi
questo e' il file Python che e' preso dagli esempi di OpenCV con minime modifiche
=======================================================
import cv2
import numpy as np
# Read image as gray-scale
img = cv2.imread('cr39film.png', cv2.IMREAD_COLOR)
cv2.imshow('Originale',img)

# Convert to gray-scale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Blur the image to reduce noise
img_blur = cv2.medianBlur(gray, 5)
# Apply hough transform on the image
circles = cv2.HoughCircles(img_blur, cv2.HOUGH_GRADIENT, 1, img.shape[0]/32, param1=50, param2=5, minRadius=0, maxRadius=10)
conta = 0
# Draw detected circles
if circles is not None:
    circles = np.uint16(np.around(circles))
    for i in circles[0, :]:
        # Draw outer circle
        #cv2.circle(img, (i[0], i[1]), i[2], (0, 255, 0), 2)
        # Draw inner circle
conta=conta+1
        cv2.circle(img, (i[0], i[1]), 2, (0, 0, 255), 2)

print ("Numero identificazioni :"+str(conta))
cv2.imshow('tt',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
=======================================================


Elaborazione Conteggio 175 eventi
diciamo che nonostante  il poco tempo dedicato al problema i risultati non sono niente male

Nessun commento:

Posta un commento

Physics informed neural network Fukuzono

Visto che puro ML non funziona per le serie tempo di cui mi sto occupando ed le regressioni basate su formule analitiche mostrano dei limiti...