domenica 14 aprile 2024

Tensorflow segmentazione UNET per frane

Ho trovato su Kaggle questo post in cui si applica la segmentazione tramite rete neurale UNET a corpi idrici

In estrema sintesi al contrario di Yolo la segmentazione non avviene tramite un box attorno all'oggetto di interesse ma tramite una maschera di pixel di forma arbitraria

Funziona per le frane? (ovviamente non sono il primo a pensarci..volevo solo provare). Ho trovata su Kaggle questo dataset in cui sono gia' disponibili le immagini e le maschere (e' un sottoinsieme di un dataset creato per la competizione Landslide4sense 2022 molto piu' voluminoso 3Gb che si trova a questo indirizzo)


Nel dataset ci sono due coppie di immagini. La prima e' un tassello Sentinel 2 truecolor di 128x128 pixel

La seconda una immagine maschera sempre di 128x128 pixel di tipo binario (frana/no frana) realizzata con intervento umano di fotointerpretazione come verita' a terra



La disposizione dei colori e' particolare come si vede dall'istogramma. Ogni colore e' una classe e le classi sono consecutive a partire dal nero. Se si apre il file maschera in Gimp non si vede niente se non si modifica la curva colori



ho applicato, usando Colab e la GPU allegata, lo script per i corpi idrici al dataset delle frane

L'unica modifica che e' ho fatto sul dataset e' stato rinominare le maschere. Il nome del file nella cartella Images deve essere identico a quello della corrispettiva cartella Masks



from functools import partial
import os

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow import keras




images_dir = 'water/Images'
masks_dir = 'water/Masks'

dirname, _, filenames = next(os.walk(images_dir))



@tf.function
def load_img_with_mask(image_path, images_dir: str = 'Images', masks_dir: str = 'Masks',images_extension: str = 'jpg', masks_extension: str = 'jpg') -> dict:
image = tf.io.read_file(image_path)
image = tf.image.decode_jpeg(image, channels=3)

mask_filename = tf.strings.regex_replace(image_path, images_dir, masks_dir)
mask_filename = tf.strings.regex_replace(mask_filename, images_extension, masks_extension)
mask = tf.io.read_file(mask_filename)
mask = tf.image.decode_image(mask, channels=1, expand_animations = False)
return (image, mask)

n_examples = 3
examples = [load_img_with_mask(os.path.join(images_dir, filenames[i])) for i in range(n_examples)]

fig, axs = plt.subplots(n_examples, 2, figsize=(14, n_examples*7), constrained_layout=True)
for ax, (image, mask) in zip(axs, examples):
ax[0].imshow(image)
ax[1].imshow(mask)
plt.show()



@tf.function
def resize_images(images, masks, max_image_size=1500):
shape = tf.shape(images)
scale = (tf.reduce_max(shape) // max_image_size) + 1
target_height, target_width = shape[-3] // scale, shape[-2] // scale
images = tf.cast(images, tf.float32)
masks = tf.cast(masks, tf.float32)
if scale != 1:
images = tf.image.resize(images, (target_height, target_width), method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
masks = tf.image.resize(masks, (target_height, target_width), method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
return (images, masks)

@tf.function
def scale_values(images, masks, mask_split_threshold = 128):
images = tf.math.divide(images, 255)
masks = tf.where(masks > mask_split_threshold, 1, 0)
return (images, masks)

@tf.function
def pad_images(images, masks, pad_mul=16, offset=0):
shape = tf.shape(images)
height, width = shape[-3], shape[-2]
target_height = height + tf.math.floormod(tf.math.negative(height), pad_mul)
target_width = width + tf.math.floormod(tf.math.negative(width), pad_mul)
images = tf.image.pad_to_bounding_box(images, offset, offset, target_height, target_width)
masks = tf.cast(tf.image.pad_to_bounding_box(masks, offset, offset, target_height, target_width), tf.uint8)
return (images, masks)

batch_size = 32
test_set_size = 300
validation_set_size = 250

dataset = tf.data.Dataset.list_files(images_dir + '/*.jpg', seed=42)

test_dataset = dataset.take(test_set_size)
dataset = dataset.skip(test_set_size)
test_dataset = test_dataset.map(load_img_with_mask)
test_dataset = test_dataset.map(scale_values)
test_dataset = test_dataset.shuffle(20)
test_dataset = test_dataset.map(lambda img, mask: resize_images(img, mask, max_image_size=2500))
test_dataset = test_dataset.map(pad_images)
test_dataset = test_dataset.batch(1).prefetch(5)


validation_dataset = dataset.take(validation_set_size)
train_dataset = dataset.skip(validation_set_size)
validation_dataset = validation_dataset.map(load_img_with_mask)
validation_dataset = validation_dataset.map(scale_values)
validation_dataset = validation_dataset.shuffle(20)
validation_dataset = validation_dataset.map(resize_images)
validation_dataset = validation_dataset.map(pad_images)
validation_dataset = validation_dataset.batch(1).prefetch(5)

train_dataset = train_dataset.map(load_img_with_mask)
train_dataset = train_dataset.map(scale_values)
train_dataset = train_dataset.shuffle(20)
train_dataset = train_dataset.map(resize_images)
train_dataset = train_dataset.map(pad_images)
train_dataset = train_dataset.batch(1).prefetch(5)

def get_unet(hidden_activation='relu', initializer='he_normal', output_activation='sigmoid'):
PartialConv = partial(keras.layers.Conv2D,
activation=hidden_activation,
kernel_initializer=initializer,
padding='same')
# Encoder
model_input = keras.layers.Input(shape=(None, None, 3))
enc_cov_1 = PartialConv(32, 3)(model_input)
enc_cov_1 = PartialConv(32, 3)(enc_cov_1)
enc_pool_1 = keras.layers.MaxPooling2D(pool_size=(2, 2))(enc_cov_1)
enc_cov_2 = PartialConv(64, 3)(enc_pool_1)
enc_cov_2 = PartialConv(64, 3)(enc_cov_2)
enc_pool_2 = keras.layers.MaxPooling2D(pool_size=(2, 2))(enc_cov_2)
enc_cov_3 = PartialConv(128, 3)(enc_pool_2)
enc_cov_3 = PartialConv(128, 3)(enc_cov_3)
enc_pool_3 = keras.layers.MaxPooling2D(pool_size=(2, 2))(enc_cov_3)
# Center
center_cov = PartialConv(256, 3)(enc_pool_3)
center_cov = PartialConv(256, 3)(center_cov)
# Decoder
upsampling1 = keras.layers.UpSampling2D(size=(2, 2))(center_cov)
dec_up_conv_1 = PartialConv(128, 2)(upsampling1)
dec_merged_1 = tf.keras.layers.Concatenate(axis=3)([enc_cov_3, dec_up_conv_1])
dec_conv_1 = PartialConv(128, 3)(dec_merged_1)
dec_conv_1 = PartialConv(128, 3)(dec_conv_1)
upsampling2 = keras.layers.UpSampling2D(size=(2, 2))(dec_conv_1)
dec_up_conv_2 = PartialConv(64, 2)(upsampling2)
dec_merged_2 = tf.keras.layers.Concatenate(axis=3)([enc_cov_2, dec_up_conv_2])
dec_conv_2 = PartialConv(64, 3)(dec_merged_2)
dec_conv_2 = PartialConv(64, 3)(dec_conv_2)
upsampling3 = keras.layers.UpSampling2D(size=(2, 2))(dec_conv_2)
dec_up_conv_3 = PartialConv(32, 2)(upsampling3)
dec_merged_3 = tf.keras.layers.Concatenate(axis=3)([enc_cov_1, dec_up_conv_3])
dec_conv_3 = PartialConv(32, 3)(dec_merged_3)
dec_conv_3 = PartialConv(32, 3)(dec_conv_3)
output = keras.layers.Conv2D(1, 1, activation=output_activation)(dec_conv_3)
return tf.keras.Model(inputs=model_input, outputs=output)



model = get_unet()

optimizer = tf.keras.optimizers.Nadam()
model.compile(loss='binary_crossentropy', optimizer=optimizer)

model.summary()



early_stopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=5)
lr_reduce = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.3, patience=3, verbose=1)

epochs = 80
history = model.fit(train_dataset, validation_data=validation_dataset, epochs=epochs, callbacks=[early_stopping, lr_reduce])


n_examples = 10

fig, axs = plt.subplots(n_examples, 3, figsize=(14, n_examples*7), constrained_layout=True)
for ax, ele in zip(axs, test_dataset.take(n_examples)):
image, y_true = ele
prediction = model.predict(image)[0]
prediction = tf.where(prediction > 0.5, 255, 0)
ax[0].set_title('Original image')
ax[0].imshow(image[0])
ax[1].set_title('Original mask')
ax[1].imshow(y_true[0])
ax[2].set_title('Predicted area')
ax[2].imshow(prediction)

plt.show()

meanIoU = tf.keras.metrics.MeanIoU(num_classes=2)
for ele in test_dataset.take(test_set_size):
image, y_true = ele
prediction = model.predict(image)[0]
prediction = tf.where(prediction > 0.5, 1, 0)
meanIoU.update_state(y_true[0], prediction)
print(meanIoU.result().numpy())



Questi sono alcuni confronti della validazione con a sinistra l'immagine Sentinel, al centro la maschera fotointerpretata da utente umano ed a destra la maschera di predizione della rete neurale






la accuratezza e' molto buona (forse troppa ...avro' fatto qualche errore?) pari a 0.98




Nessun commento:

Posta un commento

Dockerizza Flask

Un esempio semplice per inserire in un container Docker una applicazione Flask Partiamo da una semplice applicazione che ha un file app.py ...