martedì 13 agosto 2019

Progetto Tre : Inclinometro MEMS

Progetto dismesso: pubblicato a futura memoria






Di tubi inclinometrici ne esistono di varie dimensioni e materiali. La caratteristica sono le 4 scanalature a 90° per fare scendere la sonda


I tubi sono giuntati tramite manicotti. Nel caso di tubi in alluminio i manicotti sono giuntati con rivetti


La posizione dei rivetti non e' predefissata (basta che non cada sulle scanalature). Cio' comporta anche che i rivetti sporgano all'interno del tubo


Le dimesioni del tubo sono riportate nel disegno CAD (fatto con DraftSight)

Per creare la sonda inclinometrica il primo tentativo e' stato quello di una scatola con 4 denti per scivolare nelle scanalature (Disegni effettuati con FreeCad e visualizzazione in MeshLab)

Corpo

Chiusura superiore

In realta' la scelta e' stata scartata quasi subito per la necessita' di avere un meccanismo a molla che permetta di aderire al tubo (mantenendo lo scivolamento). Una idea successiva e' stata quella di inserire lamelle in acciaio armonico (in funzione di molla) per permettere lo scivolamento e garantire la stabilita'



Questa e' una sonda inclinometrica commerciale




CubeMX e SW4STM32 AC6


Per creare un progetto STM32 si parte da CubeMX con New Project e selezionando la scheda di sviluppo


e' piu' comodo usare il tab board selector al posto di MCU/MPU  selector

Se la scheda e' ancora stato scaricato il pacchetto di configurazione della scheda il software effettua il download. Una volta scaricato il pacchetto nel repository di CubeMX saranno presenti anche degli esempi per l'utilizzo della scheda

Per esempio su Windows il repository si trova in

C:\Users\PC\STM32Cube\Repository\

mentre gli esempi sono nelle sottodirectory ordinate per classe di scheda

C:\Users\PC\STM32Cube\Repository\STM32Cube_FW_F7_V1.15.0\Projects\STM32746G-Discovery\Examples

Gli esempi vengono presentati in diverse directory a seconda dell'IDE (quindi usando AC6 si usera' la directory SW4STM32)

Prima di premere il pulsante Generate Code si deve selezionare Toolchain/IDE a SW4STM32


successivamente si deve copiare il percorso della Project Location

A questo punto si puo' aprire SW4STM32 e aprire il progetto da Open File from File System selezionando la directory

In SW4STM32 si possono importare anche librerie in C standard. Nel progetto basta trascinare i file nel ramo del progetto e poi settare la nuova path nelle proprieta' del progetto (nel caso di esempio mini-gmp, una versione ridotta di GMPLib)...ovviamente se si vogliono importare librerie binarie queste devono essere gia' compilate per ARM




FN Keys su Surface 1

Un piccolo promemoria per me stesso : per abilitare i tasti  funzione Fn su Surface 1 si deve premere il tasto Fn+Blocco Maiuscole


Alpine Linux

Alla ricerca di una distro Linux leggera ho voluto fare una prova con Alpine Linux




Per l'installazione sono partito dalla versione extended

All'avvio della iso si digita root e senza password ci si trova al prompt. Per iniziare la configurazione si digita

configure-alpine
(i comandi di configurazione iniziano tutti con setup-* come per esempio setup-ntp)

si accede alla scelta del layout di tastiera, la configurazione della rete, la nuova password di root, la timezone, un eventuale proxy ed il servizio NTP. Si configura poi il repository (l'opzione di default ricerca il repository piu' veloce). Si sceglie poi il disco dove effettuare l'installazione (si indica come "sda", "sdb"....) e poi il tipo di utilizzo (normalmente si seleziona "sys")

il packet manager si chiama apk i cui comandi base sono

apk update
apk upgrade
apk add ......
apk del .......
apk search .....

di default e' abilitato solo il repository main, per attivare il community si deve editare con vi il file /etc/apk/repositories (I repositories edge sono considerati di sviluppo con modalita' rolling release)

per installare Xorg si usa

setup-xorg-base

ragionevolmente la prima volta che si lancia startx Xorg crasha per mancanza di configurazione del window manager

Si lancia quindi

apk search xf86-video 

per cercare il driver della propria scheda video e si installa (per esempio) con

apk add xf86-video-vesa

si prosegue con

apk add xf86-input-mouse xf86-input-keyboard xf86-input-evdev
apk add xfce4 xfce4-terminal 
apk add faenza-icon-theme tango-icon-theme
rc-service dbus start
rc-update add dbus

si lancia quindi la configurazione di Xorg

Xorg -configure

e si lancia startx per accedere ad X



come opzione a XFCE ci sono altri window manager gia' disponibili come Gnome, Mate ed Awesome

Per quanto riguarda Awesome ho trovato non possibile installare aterm mentre funziona correttamente xterm


per installare il compilatore gcc e gli strumenti di sviluppo si usa

apk add build-base

documentazione puo' essere trovata a questo link

lunedì 12 agosto 2019

Arduino Uno blink con Atmel Studio 7

Nota
Nonostante l'uso di Atmel Studio non e' possibile effettuare il debug step by step del programma a meno che di non usare un debugger esterno (come Atmel ICE) del costo di circa 100 euro (esistono in vendita dei dispositivi tipo AVRISP Mkii che pero' risultano essere solo dei programmatori e non dei debuggers)

Negli STM32 con STLink invece si ha gia' a disposizione un  programmatore debugger a basso costo (pochi euro)
----------------------------------------------------------

Atmel Studio 7 si puo' scaricare dal seguente link

Si crea un progetto GCC C Executable


e si seleziona ATMega 328p


si  va al menu Tools/External tools


Si aggiunge un nuovo tool editando Command ed argomenti con (si deve avere gia' installato Arduino IDE e si fa puntare alle directory)

C:\Program Files (x86)\Arduino\hardware\tools\avr/bin/avrdude 


-C"C:\Program Files (x86)\Arduino\hardware\tools\avr/etc/avrdude.conf" -v -patmega328p -carduino -PCOM11 -b115200 -D -Uflash:w:"$(ProjectDir)Debug\$(TargetName).hex":i 


a questo punto si puo' editare main.c con il seguente codice (la programmazione avviene in C)

--------------------------------------
#define F_CPU 16000000UL  //frequenza del processore

#include <avr/io.h>
#include <util/delay.h>


int main(void)
{
DDRB |= 0B00100000;
    while (1) 
    {
PORTB |= 0B00100000;
_delay_ms(1000);
PORTB &= 0B11011111;
_delay_ms(500);
    }
}

--------------------------------------

si compila con Build Solution (tasto F7) e si fa l'upload  su Arduino Uno  con Tools/Arduino Uno Bootloader

Ma cosa vuol dire il codice sopra riportato. Si fa riferimento al Data Sheet di AVR Mega328p

DDRB (Data Direction Register= indica come settare le porte digitali (la sigla B indica le porte digitali da 8 a 13, C indica i pin analogici e D indica le porte digitali da 0 a 7) se in lettura od in scrittura

PORTB  invece come settare o leggere la porta

DDRB |= 0B00100000; imposta la porta DDB5 come output (fa un OR sul valore della porta stessa con una maschera)





ma come mai proprio la porta DDB5....perche' nella Arduino Uno e' collegata al Pin D13 a cui e' collegato il led 


dopo di cio' con PORTB (ed una serie di AND ed OR con una maschera binaria) viene settato il valore di DDB5 (e quindi del pin D13) a 0 ed 1




il corrispondente sketch Arduino e' ovviamente

--------------------------------------
void setup() {
  pinMode(LED_BUILTIN, OUTPUT);
}

void loop() {
  digitalWrite(LED_BUILTIN, HIGH);  
  delay(1000);                     
  digitalWrite(LED_BUILTIN, LOW);    
  delay(500);                      
}
--------------------------------------


una differenza evidente e' che il codice compilato Arduino IDE e' di 930 bytes mentre il codice C con Atmel Studio e' di soli 176 bytes

giovedì 8 agosto 2019

Touch GPIO su ESP32

Stavo pensando di crearmi uno strumento musicale con una Arduino ma avevo bisogno di un interruttore capacitivo ..stavo per comprarmi una decina di questi componenti (un paio di euro di costo ciascuno)



quando ho scoperto che la ESP-WROOM-32 ha ben 10 pin GPIO che possono essere utilizzati come interruttori capacitativi



il codice per abilitare un pin GPIO come capacitivo e' il seguente
-----------------------------------------------------------
void setup() {
 Serial.begin(115200);

}

void loop() {
  Serial.println(touchRead(4));
  delay(100);

}
-----------------------------------------------------------

Abilitando il plotter seriale della Arduino IDE si vede che il valore on/off non e' assoluto...e' quindi necessario tarare una soglia

Il valore alto e' quando il pin non e' toccato, il valore basso e' quando il pin e' toccato dalla mano


Kiss FFT



------------------------------------------------------------------------------------------------
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include <kiss_fft.h>
#include <tools/kiss_fftr.h>


#define NUM_FFT 256

int main()
{

float samples[NUM_FFT];


// si crea un segnale fittizio
for (int i = 0; i < NUM_FFT; i++) {
    samples[i] = sin(i*0.1);
    // con questo incremento si che i varia da 0 a 25.6 rad
    // ovvero circa 4 volte 2pigreco (ovvero 4 circonferenze)


}

    int isinverse = 1;
    kiss_fft_scalar zero;
    memset(&zero,0,sizeof(zero));
    kiss_fft_cpx fft_in[NUM_FFT];
    kiss_fft_cpx fft_out[NUM_FFT];
    kiss_fft_cpx fft_reconstructed[NUM_FFT];
    kiss_fftr_cfg fft = kiss_fftr_alloc(NUM_FFT ,0 ,0,0);
    kiss_fftr_cfg ifft = kiss_fftr_alloc(NUM_FFT,isinverse,0,0);

// azzera le matrici
for (int i = 0; i < NUM_FFT; i++) {
    fft_in[i].r = zero;
    fft_in[i].i = zero;
    fft_out[i].r = zero;
    fft_out[i].i = zero;
    fft_reconstructed[i].r = zero;
    fft_reconstructed[i].i = zero;
}

//inserisce i campioni nella parte reale della matrice di input
for (int i = 0; i < NUM_FFT; i++) {
     fft_in[i].r = samples[i];
     fft_in[i].i = zero;
     fft_out[i].r = zero;
     fft_out[i].i = zero;
 }

 kiss_fftr(fft, (kiss_fft_scalar*) fft_in, fft_out);
 kiss_fftri(ifft, fft_out, (kiss_fft_scalar*)fft_reconstructed);

// calcolo della potenza
for (int i = 0; i < NUM_FFT/2; i++) {
    samples[i] = sqrt((fft_out[i].i*fft_out[i].i)+(fft_out[i].i*fft_out[i].i))/(NUM_FFT*2);
    printf("%.6f\n\r", samples[i]);

}

    printf("Terminato!\n\r");
    return 0;
}
------------------------------------------------------------------------------------------------


Dato input

Potenza



Segnale ricostruito

Debugger integrato ESP32S3

Aggiornamento In realta' il Jtag USB funziona anche sui moduli cinesi Il problema risiede  nell'ID USB della porta Jtag. Nel modulo...