venerdì 11 ottobre 2024

Aruco e Image Stacking

Uno dei problemi maggiori dell'uso dei tag aruco in esterno per misurare distanze e' che le condizioni di illuminazione solare sono molto variabili e la compressione jpg completa l'opera aggiungendo rumore su rumore

Per cercare di limitare il problema ho provato a fare image stacking sovrapponendo 8 foto (una ogni ora dalle 09 alle 16) con lo script al link https://github.com/maitek/image_stacking ed applicando il programma visto qui


Il miglioramento non e' trascurabile perche' la standard deviation e' passata

3.1 m => da 0.19% a 0.16% (0.5 cm)

5.4 m => da 0.35% a 0.28% (1.5 cm)

7.6 m => da 0.71% a 0.38% (2.8 cm)

9.6 m => da 0.5% a 0.41% (4.8 cm)

 

import os
import cv2
import numpy as np
from time import time



# Align and stack images with ECC method
# Slower but more accurate
def stackImagesECC(file_list):
M = np.eye(3, 3, dtype=np.float32)

first_image = None
stacked_image = None

for file in file_list:
image = cv2.imread(file,1).astype(np.float32) / 255
print(file)
if first_image is None:
# convert to gray scale floating point image
first_image = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
stacked_image = image
else:
# Estimate perspective transform
s, M = cv2.findTransformECC(cv2.cvtColor(image,cv2.COLOR_BGR2GRAY), first_image, M, cv2.MOTION_HOMOGRAPHY)
w, h, _ = image.shape
# Align image to first image
image = cv2.warpPerspective(image, M, (h, w))
stacked_image += image

stacked_image /= len(file_list)
stacked_image = (stacked_image*255).astype(np.uint8)
return stacked_image


# Align and stack images by matching ORB keypoints
# Faster but less accurate
def stackImagesKeypointMatching(file_list):

orb = cv2.ORB_create()

# disable OpenCL to because of bug in ORB in OpenCV 3.1
cv2.ocl.setUseOpenCL(False)

stacked_image = None
first_image = None
first_kp = None
first_des = None
for file in file_list:
print(file)
image = cv2.imread(file,1)
imageF = image.astype(np.float32) / 255

# compute the descriptors with ORB
kp = orb.detect(image, None)
kp, des = orb.compute(image, kp)

# create BFMatcher object
matcher = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)

if first_image is None:
# Save keypoints for first image
stacked_image = imageF
first_image = image
first_kp = kp
first_des = des
else:
# Find matches and sort them in the order of their distance
matches = matcher.match(first_des, des)
matches = sorted(matches, key=lambda x: x.distance)

src_pts = np.float32(
[first_kp[m.queryIdx].pt for m in matches]).reshape(-1, 1, 2)
dst_pts = np.float32(
[kp[m.trainIdx].pt for m in matches]).reshape(-1, 1, 2)

# Estimate perspective transformation
M, mask = cv2.findHomography(dst_pts, src_pts, cv2.RANSAC, 5.0)
w, h, _ = imageF.shape
imageF = cv2.warpPerspective(imageF, M, (h, w))
stacked_image += imageF

stacked_image /= len(file_list)
stacked_image = (stacked_image*255).astype(np.uint8)
return stacked_image

# ===== MAIN =====
# Read all files in directory
import argparse


if __name__ == '__main__':

parser = argparse.ArgumentParser(description='')
parser.add_argument('input_dir', help='Input directory of images ()')
parser.add_argument('output_image', help='Output image name')
parser.add_argument('--method', help='Stacking method ORB (faster) or ECC (more precise)')
parser.add_argument('--show', help='Show result image',action='store_true')
args = parser.parse_args()

image_folder = args.input_dir
if not os.path.exists(image_folder):
print("ERROR {} not found!".format(image_folder))
exit()

file_list = os.listdir(image_folder)
file_list = [os.path.join(image_folder, x)
for x in file_list if x.endswith(('.jpg', '.png','.bmp'))]

if args.method is not None:
method = str(args.method)
else:
method = 'KP'

tic = time()

if method == 'ECC':
# Stack images using ECC method
description = "Stacking images using ECC method"
print(description)
stacked_image = stackImagesECC(file_list)

elif method == 'ORB':
#Stack images using ORB keypoint method
description = "Stacking images using ORB method"
print(description)
stacked_image = stackImagesKeypointMatching(file_list)

else:
print("ERROR: method {} not found!".format(method))
exit()

print("Stacked {0} in {1} seconds".format(len(file_list), (time()-tic) ))

print("Saved {}".format(args.output_image))
cv2.imwrite(str(args.output_image),stacked_image)

# Show image
if args.show:
cv2.imshow(description, stacked_image)
cv2.waitKey(0)

 

 

 

 

Nessun commento:

Posta un commento

Physics informed neural network Fukuzono

Visto che puro ML non funziona per le serie tempo di cui mi sto occupando ed le regressioni basate su formule analitiche mostrano dei limiti...