Usando gli Aruco tag in ambiente esterno con illuminazione solare a diverse ore e in diversi periodi dell'anno ho trovato un errore nella stima della distanza tra due tag compresi tra 0.7% e 1.3% della distanza misurata. La domanda e' stata: e' possibile ridurre l'errore ?
Ho provato ad applicare il filtro Kalman per condizioni statiche (le distanze tra i tag nel tempo non sono variate) usando usando il codice a questo indirizzo
Nel grafico sottostante i punti blu sono i dati non filtrati, in linea continua blu i dati filtrati, in linea rossa il valore reale della misura di distanza
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
def kalman_1d(x, P, measurement, R_est, Q_est):
x_pred = x
P_pred = P + Q_est
K = P_pred / (P_pred + R_est)
x_est = x_pred + K * (measurement - x_pred)
P_est = (1 - K) * P_pred
return x_est, P_est
def plot_1d_comparison(measurements_made, estimate, true_value, axis):
axis.plot(measurements_made ,'k+' ,label='measurements' ,alpha=0.3)
axis.plot(estimate ,'-' ,label='KF estimate')
if not isinstance(true_value, (list, tuple, np.ndarray)):
# plot line for a constant value
axis.axhline(true_value ,color='r' ,label='true value', alpha=0.5)
else:
# for a list, tuple or array, plot the points
axis.plot(true_value ,color='r' ,label='true value', alpha=0.5)
axis.legend(loc = 'lower right')
axis.set_title('Estimated position vs. time step')
axis.set_xlabel('Time')
axis.set_ylabel('$x_t$')
def plot_1d_error(estimated_error, lower_limit, upper_limit, axis):
# lower_limit and upper_limit are the lower and upper limits of the vertical axis
axis.plot(estimated_error, label='KF estimate for $P$')
axis.legend(loc = 'upper right')
axis.set_title('Estimated error vs. time step')
axis.set_xlabel('Time')
axis.set_ylabel('$P_t$')
plt.setp(axis ,'ylim' ,[lower_limit, upper_limit])
nome_file = "20_40"
df = pd.read_csv(nome_file+'.csv',header=0,sep=";")
#11 5.38
#15 3.39
#25 7.46
#40 4.26
mu = 4.26 # Actual position
R = 0.1 # Actual standard deviation of actual measurements (R)
# Generate measurements
#n_measurements = 1000 # Change the number of points to see how the convergence changes
#Z = np.random.normal(mu, np.sqrt(R), size=n_measurements)
Z = df[df.columns[2]].to_numpy()
# Estimated covariances
Q_est = 1e-4
R_est = 2e-2
# initial guesses
x = 5.1 # Use an integer (imagine the initial guess is determined with a meter stick)
P = 0.04 # error covariance P
KF_estimate=[] # To store the position estimate at each time point
KF_error=[] # To store estimated error at each time point
for z in Z:
x, P = kalman_1d(x, P, z, R_est, Q_est)
KF_estimate.append(x)
KF_error.append(P)
fig, axes = plt.subplots(1 ,2, figsize=(12, 5))
plot_1d_comparison(Z, KF_estimate, mu, axes[0])
np.savetxt(nome_file+"_stima.csv",KF_estimate)
plot_1d_error(KF_error, 0, 0.015, axes[1])
plt.tight_layout()
plt.savefig(nome_file+'.png')
Nessun commento:
Posta un commento