mercoledì 13 novembre 2024

Update Plotly Dash Csv

 

 


from dash import Dash, html, dcc, callback, Output, Input,State
import plotly.express as px
import pandas as pd

import sqlite3
df = pd.read_csv('./sir.csv')


#cnx = sqlite3.connect('winet.db')
#df = pd.read_sql_query("SELECT * FROM sensori", cnx)


app = Dash(__name__)

app.layout = [
html.H1(children='Sensori', style={'textAlign':'center'}),
html.Div([
dcc.Graph(id='graph-content',
figure={
'data': [
{'x': df.Data, 'y': df.Livello,
'type': 'line', 'name': '68'},
],
'layout': {
'title': 'Soggiacenza'
}
}),
dcc.Interval(
id='interval-component',
interval=2*1000,
n_intervals=0
)
])
]

@app.callback(
Output(component_id='graph-content', component_property='figure'),
Input('interval-component', 'n_intervals'), [State('graph-content', 'figure')]
)

def update_graph(n,figure):
df = pd.read_csv('./sir.csv')
figure['data'][0]['x'] = df.Data
figure['data'][0]['y'] = df.Livello
return figure


if __name__ == '__main__':
app.run(debug=True)

 

Nessun commento:

Posta un commento

Physics informed neural network Fukuzono

Visto che puro ML non funziona per le serie tempo di cui mi sto occupando ed le regressioni basate su formule analitiche mostrano dei limiti...