martedì 16 aprile 2024

Sigaretta Elettronica

Avevo visto qualche tempo fa un documentario sulla RAI Svizzera sul carico inquinante delle sigarette elettroniche monouso

Ne ho trovata una gettata davanti a casa ed e' partito lo smontaggio


Fondamentalmente e' estremamente semplice...c'e' un contenitore in cui c'e' una sostanza bianca impregnata della sostanza da aspirare (credo cotone), una batteria ed due fili che si connettono una sorta di maglia metallica che per effetto joule si riscalda


La batteria e' "di pregio" (modello 13100 da 3.7V ) in quanto e' al litio da 550 mAh


Nella base e' contenuta una capsula forata che credo sia un sensore di pressione che funziona da interruttore (tipo questo https://www.electroncomponents.com/micro-air-pressure-sensor-for-electronic-cigarette)




Sicuramente non dovrebbero essere gettate a terra ed altrettanto sicuramente avrebbero bisogno di uno smaltimento ideneo 

Ho provato a vedere la tensione residua nella batteria che era inferiore ai 3 V

Frugando su Internet ho trovato un video esattamente dello stesso modello







domenica 14 aprile 2024

Tensorflow segmentazione UNET per frane

Ho trovato su Kaggle questo post in cui si applica la segmentazione tramite rete neurale UNET a corpi idrici

In estrema sintesi al contrario di Yolo la segmentazione non avviene tramite un box attorno all'oggetto di interesse ma tramite una maschera di pixel di forma arbitraria

Funziona per le frane? (ovviamente non sono il primo a pensarci..volevo solo provare). Ho trovata su Kaggle questo dataset in cui sono gia' disponibili le immagini e le maschere (e' un sottoinsieme di un dataset creato per la competizione Landslide4sense 2022 molto piu' voluminoso 3Gb che si trova a questo indirizzo)


Nel dataset ci sono due coppie di immagini. La prima e' un tassello Sentinel 2 truecolor di 128x128 pixel

La seconda una immagine maschera sempre di 128x128 pixel di tipo binario (frana/no frana) realizzata con intervento umano di fotointerpretazione come verita' a terra



La disposizione dei colori e' particolare come si vede dall'istogramma. Ogni colore e' una classe e le classi sono consecutive a partire dal nero. Se si apre il file maschera in Gimp non si vede niente se non si modifica la curva colori



ho applicato, usando Colab e la GPU allegata, lo script per i corpi idrici al dataset delle frane

L'unica modifica che e' ho fatto sul dataset e' stato rinominare le maschere. Il nome del file nella cartella Images deve essere identico a quello della corrispettiva cartella Masks



from functools import partial
import os

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow import keras




images_dir = 'water/Images'
masks_dir = 'water/Masks'

dirname, _, filenames = next(os.walk(images_dir))



@tf.function
def load_img_with_mask(image_path, images_dir: str = 'Images', masks_dir: str = 'Masks',images_extension: str = 'jpg', masks_extension: str = 'jpg') -> dict:
image = tf.io.read_file(image_path)
image = tf.image.decode_jpeg(image, channels=3)

mask_filename = tf.strings.regex_replace(image_path, images_dir, masks_dir)
mask_filename = tf.strings.regex_replace(mask_filename, images_extension, masks_extension)
mask = tf.io.read_file(mask_filename)
mask = tf.image.decode_image(mask, channels=1, expand_animations = False)
return (image, mask)

n_examples = 3
examples = [load_img_with_mask(os.path.join(images_dir, filenames[i])) for i in range(n_examples)]

fig, axs = plt.subplots(n_examples, 2, figsize=(14, n_examples*7), constrained_layout=True)
for ax, (image, mask) in zip(axs, examples):
ax[0].imshow(image)
ax[1].imshow(mask)
plt.show()



@tf.function
def resize_images(images, masks, max_image_size=1500):
shape = tf.shape(images)
scale = (tf.reduce_max(shape) // max_image_size) + 1
target_height, target_width = shape[-3] // scale, shape[-2] // scale
images = tf.cast(images, tf.float32)
masks = tf.cast(masks, tf.float32)
if scale != 1:
images = tf.image.resize(images, (target_height, target_width), method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
masks = tf.image.resize(masks, (target_height, target_width), method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
return (images, masks)

@tf.function
def scale_values(images, masks, mask_split_threshold = 128):
images = tf.math.divide(images, 255)
masks = tf.where(masks > mask_split_threshold, 1, 0)
return (images, masks)

@tf.function
def pad_images(images, masks, pad_mul=16, offset=0):
shape = tf.shape(images)
height, width = shape[-3], shape[-2]
target_height = height + tf.math.floormod(tf.math.negative(height), pad_mul)
target_width = width + tf.math.floormod(tf.math.negative(width), pad_mul)
images = tf.image.pad_to_bounding_box(images, offset, offset, target_height, target_width)
masks = tf.cast(tf.image.pad_to_bounding_box(masks, offset, offset, target_height, target_width), tf.uint8)
return (images, masks)

batch_size = 32
test_set_size = 300
validation_set_size = 250

dataset = tf.data.Dataset.list_files(images_dir + '/*.jpg', seed=42)

test_dataset = dataset.take(test_set_size)
dataset = dataset.skip(test_set_size)
test_dataset = test_dataset.map(load_img_with_mask)
test_dataset = test_dataset.map(scale_values)
test_dataset = test_dataset.shuffle(20)
test_dataset = test_dataset.map(lambda img, mask: resize_images(img, mask, max_image_size=2500))
test_dataset = test_dataset.map(pad_images)
test_dataset = test_dataset.batch(1).prefetch(5)


validation_dataset = dataset.take(validation_set_size)
train_dataset = dataset.skip(validation_set_size)
validation_dataset = validation_dataset.map(load_img_with_mask)
validation_dataset = validation_dataset.map(scale_values)
validation_dataset = validation_dataset.shuffle(20)
validation_dataset = validation_dataset.map(resize_images)
validation_dataset = validation_dataset.map(pad_images)
validation_dataset = validation_dataset.batch(1).prefetch(5)

train_dataset = train_dataset.map(load_img_with_mask)
train_dataset = train_dataset.map(scale_values)
train_dataset = train_dataset.shuffle(20)
train_dataset = train_dataset.map(resize_images)
train_dataset = train_dataset.map(pad_images)
train_dataset = train_dataset.batch(1).prefetch(5)

def get_unet(hidden_activation='relu', initializer='he_normal', output_activation='sigmoid'):
PartialConv = partial(keras.layers.Conv2D,
activation=hidden_activation,
kernel_initializer=initializer,
padding='same')
# Encoder
model_input = keras.layers.Input(shape=(None, None, 3))
enc_cov_1 = PartialConv(32, 3)(model_input)
enc_cov_1 = PartialConv(32, 3)(enc_cov_1)
enc_pool_1 = keras.layers.MaxPooling2D(pool_size=(2, 2))(enc_cov_1)
enc_cov_2 = PartialConv(64, 3)(enc_pool_1)
enc_cov_2 = PartialConv(64, 3)(enc_cov_2)
enc_pool_2 = keras.layers.MaxPooling2D(pool_size=(2, 2))(enc_cov_2)
enc_cov_3 = PartialConv(128, 3)(enc_pool_2)
enc_cov_3 = PartialConv(128, 3)(enc_cov_3)
enc_pool_3 = keras.layers.MaxPooling2D(pool_size=(2, 2))(enc_cov_3)
# Center
center_cov = PartialConv(256, 3)(enc_pool_3)
center_cov = PartialConv(256, 3)(center_cov)
# Decoder
upsampling1 = keras.layers.UpSampling2D(size=(2, 2))(center_cov)
dec_up_conv_1 = PartialConv(128, 2)(upsampling1)
dec_merged_1 = tf.keras.layers.Concatenate(axis=3)([enc_cov_3, dec_up_conv_1])
dec_conv_1 = PartialConv(128, 3)(dec_merged_1)
dec_conv_1 = PartialConv(128, 3)(dec_conv_1)
upsampling2 = keras.layers.UpSampling2D(size=(2, 2))(dec_conv_1)
dec_up_conv_2 = PartialConv(64, 2)(upsampling2)
dec_merged_2 = tf.keras.layers.Concatenate(axis=3)([enc_cov_2, dec_up_conv_2])
dec_conv_2 = PartialConv(64, 3)(dec_merged_2)
dec_conv_2 = PartialConv(64, 3)(dec_conv_2)
upsampling3 = keras.layers.UpSampling2D(size=(2, 2))(dec_conv_2)
dec_up_conv_3 = PartialConv(32, 2)(upsampling3)
dec_merged_3 = tf.keras.layers.Concatenate(axis=3)([enc_cov_1, dec_up_conv_3])
dec_conv_3 = PartialConv(32, 3)(dec_merged_3)
dec_conv_3 = PartialConv(32, 3)(dec_conv_3)
output = keras.layers.Conv2D(1, 1, activation=output_activation)(dec_conv_3)
return tf.keras.Model(inputs=model_input, outputs=output)



model = get_unet()

optimizer = tf.keras.optimizers.Nadam()
model.compile(loss='binary_crossentropy', optimizer=optimizer)

model.summary()



early_stopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=5)
lr_reduce = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.3, patience=3, verbose=1)

epochs = 80
history = model.fit(train_dataset, validation_data=validation_dataset, epochs=epochs, callbacks=[early_stopping, lr_reduce])


n_examples = 10

fig, axs = plt.subplots(n_examples, 3, figsize=(14, n_examples*7), constrained_layout=True)
for ax, ele in zip(axs, test_dataset.take(n_examples)):
image, y_true = ele
prediction = model.predict(image)[0]
prediction = tf.where(prediction > 0.5, 255, 0)
ax[0].set_title('Original image')
ax[0].imshow(image[0])
ax[1].set_title('Original mask')
ax[1].imshow(y_true[0])
ax[2].set_title('Predicted area')
ax[2].imshow(prediction)

plt.show()

meanIoU = tf.keras.metrics.MeanIoU(num_classes=2)
for ele in test_dataset.take(test_set_size):
image, y_true = ele
prediction = model.predict(image)[0]
prediction = tf.where(prediction > 0.5, 1, 0)
meanIoU.update_state(y_true[0], prediction)
print(meanIoU.result().numpy())



Questi sono alcuni confronti della validazione con a sinistra l'immagine Sentinel, al centro la maschera fotointerpretata da utente umano ed a destra la maschera di predizione della rete neurale






la accuratezza e' molto buona (forse troppa ...avro' fatto qualche errore?) pari a 0.98




giovedì 11 aprile 2024

Inferenza TF Lite su CPU e TPU

Per questa prova e' stato selezionato il modello di esempio da questo link riguardante il dataset 900+ birds iNaturalist 2017

 

Per prima cosa c'e' da sottolineare che i modelli per CPU non sono compatibili con le TPU e viceversa. Inoltre l'immagine con cui si vuole fare inferenza deve essere dello stesso tipo (float32,uint8) e delle stesse dimensioni del modello.

CPU

python3 esempio.py --model_file mobilenet_v2_1.0_224_inat_bird_quant.tflite --label_file inat_bird_labels.txt --image ./images/th-1232548430.jpg
 

Risultato

0.831373: Cyanistes caeruleus (Eurasian Blue Tit)
0.027451: Parus major (Great Tit)
0.003922: Coereba flaveola (Bananaquit)
0.003922: Vireo philadelphicus (Philadelphia Vireo)
0.003922: Myiozetetes similis (Social Flycatcher)

 

import argparse
import time

import numpy as np
from PIL import Image
import tensorflow as tf


def load_labels(filename):
with open(filename, 'r') as f:
return [line.strip() for line in f.readlines()]


if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'-i',
'--image',
default='/tmp/grace_hopper.bmp',
help='image to be classified')
parser.add_argument(
'-m',
'--model_file',
default='/tmp/mobilenet_v1_1.0_224_quant.tflite',
help='.tflite model to be executed')
parser.add_argument(
'-l',
'--label_file',
default='/tmp/labels.txt',
help='name of file containing labels')
parser.add_argument(
'--input_mean',
default=127.5, type=float,
help='input_mean')
parser.add_argument(
'--input_std',
default=127.5, type=float,
help='input standard deviation')
parser.add_argument(
'--num_threads', default=None, type=int, help='number of threads')
parser.add_argument(
'-e', '--ext_delegate', help='external_delegate_library path')
parser.add_argument(
'-o',
'--ext_delegate_options',
help='external delegate options, \
format: "option1: value1; option2: value2"')

args = parser.parse_args()

ext_delegate = None
ext_delegate_options = {}

# parse extenal delegate options
if args.ext_delegate_options is not None:
options = args.ext_delegate_options.split(';')
for o in options:
kv = o.split(':')
if (len(kv) == 2):
ext_delegate_options[kv[0].strip()] = kv[1].strip()
else:
raise RuntimeError('Error parsing delegate option: ' + o)

# load external delegate
if args.ext_delegate is not None:
print('Loading external delegate from {} with args: {}'.format(
args.ext_delegate, ext_delegate_options))
ext_delegate = [
tflite.load_delegate(args.ext_delegate, ext_delegate_options)
]

interpreter = tf.lite.Interpreter(
model_path=args.model_file,
experimental_delegates=ext_delegate,
num_threads=args.num_threads)
interpreter.allocate_tensors()

input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

# check the type of the input tensor
floating_model = input_details[0]['dtype'] == np.float32

# NxHxWxC, H:1, W:2
height = input_details[0]['shape'][1]
width = input_details[0]['shape'][2]
img = Image.open(args.image).resize((width, height))

# add N dim
input_data = np.expand_dims(img, axis=0)

if floating_model:
input_data = (np.float32(input_data) - args.input_mean) / args.input_std

interpreter.set_tensor(input_details[0]['index'], input_data)

start_time = time.time()
interpreter.invoke()
stop_time = time.time()

output_data = interpreter.get_tensor(output_details[0]['index'])
results = np.squeeze(output_data)

top_k = results.argsort()[-5:][::-1]
labels = load_labels(args.label_file)
for i in top_k:
if floating_model:
print('{:08.6f}: {}'.format(float(results[i]), labels[i]))
else:
print('{:08.6f}: {}'.format(float(results[i] / 255.0), labels[i]))

print('time: {:.3f}ms'.format((stop_time - start_time) * 1000))


 

GPU

python3 inferenza.py (attenzione python e basta genera errore su modulo pathlib)

 

Risultato

Cyanistes caeruleus (Eurasian Blue Tit): 0.81250
 

======================================

import os
import pathlib
from pycoral.utils import edgetpu
from pycoral.utils import dataset
from pycoral.adapters import common
from pycoral.adapters import classify
from PIL import Image

# Specify the TensorFlow model, labels, and image
script_dir = pathlib.Path(__file__).parent.absolute()
model_file = os.path.join(script_dir, 'mobilenet_v2_1.0_224_quant_edgetpu.tflite')
label_file = os.path.join(script_dir, 'imagenet_labels.txt')
image_file = os.path.join(script_dir, 'parrot.jpg')

# Initialize the TF interpreter
interpreter = edgetpu.make_interpreter(model_file)
interpreter.allocate_tensors()

# Resize the image
size = common.input_size(interpreter)
image = Image.open(image_file).convert('RGB').resize(size, Image.ANTIALIAS)

# Run an inference
common.set_input(interpreter, image)
interpreter.invoke()
classes = classify.get_classes(interpreter, top_k=1)

# Print the result
labels = dataset.read_label_file(label_file)
for c in classes:
  print('%s: %.5f' % (labels.get(c.id, c.id), c.score)) 

======================================

mercoledì 10 aprile 2024

Decision Tree Tensorflow su dati Sentinel 2

 Ho ripreso il filone di questa prova per provare i Decision Tree con le firme spettrali di Sentinel 2

Per la prova ho preso l'immagine S2B_MSIL2A_20230826T100559_N0509_R022_T32TPP_20230826T134424.SAFE

del periodo estivo del Mugello (Toscana) in modo da avere suolo nudo disponibile.


Visto che volevo estrarre tutte le bande tramite SNAP ho campionato tutte le bande a 10 m (altrimenti come visto nel precedente post lo Spectral Viewer estrae solo le bande native a 10 m)...e qui c'e' un problema...ho dovuto fare il resampling spaziale di tutta l'immagine e dopo fare il subset della mia sola area di interesse altrimenti, invertendo le due operazioni, SNAP entrava continuamente in errore

Usando gli OpenData della Regione Toscana

https://dati.toscana.it/dataset/dbped

ho usato il dataset per selezionare il parametro contenuto in argilla del suolo categorizzandolo a passi del 5%. Usando i Pin e la vista sincronizzata tra la mappe del suolo e l'immagine telerilevata sono selezionati 153 punti appartenenti a 4 classi di contenuto in argilla

Classe/Nr spettri 3 44 2 41 0 34 1 34

Il contenuto in argille delle classi e'

classe 1 (amaranto) : 45-50%

classe 2 (arancione) : 30-35%

classe 3 (rosso) :40-45%

classe 4 (verde) : 20-25%




il file dati in CSV e' formato nel seguente modo

443,490,560,665,705,740,783,842,865,945,1610,2190,Classe
0.0711,0.1056,0.1548,0.2046,0.2335,0.2442,0.2617,0.2624,0.2801,0.2813,0.3556,0.2868,1
0.0777,0.1052,0.157,0.2032,0.2311,0.2415,0.2611,0.2562,0.2741,0.2841,0.3473,0.2829,1

Come si vede dall'esempio la variabilita' spettrale in ogni classe e' molto elevata (in rosso lo spettro medio)



Lo spettro medio per ogni classe di contenuto in argilla e' visualizzato negl grafico sottostante


Usando una rete neurale tradizionale l'accuratezza e ' prossima al 77%

import pandas as pd
import numpy as np
import tensorflow as tf
import seaborn as sns
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense,Dropout
from sklearn.preprocessing import LabelEncoder , StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, confusion_matrix

df = pd.read_csv('/content/totale2.csv')
print(df.head())

le = LabelEncoder()
df['Classe'] = le.fit_transform(df['Classe'])

X = df.drop(columns=['Classe'])
y = df['Classe']
print(y.head())
print(y.value_counts())
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.25,shuffle=True,random_state=7)

sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

print(X_train.size)
print(y_train)
y_train = tf.keras.utils.to_categorical(y_train,num_classes=4)
def get_models():
    model = Sequential([
        Dense(units=32,input_shape=(12,),activation='relu'),
        Dense(units=32,activation='relu'),
        Dropout(0.5),
        Dense(units=4,activation='softmax')
    ])
    return model

model = get_models()
model.compile(optimizer='Adam',loss='categorical_crossentropy',metrics=['accuracy'])
model.summary()

model.fit(X_train,y_train,epochs=100, verbose=2)

prediction = model.predict(X_test)
prediction = np.argmax(prediction,axis=-1)
acury = accuracy_score(y_test,prediction)
print(acury)
cm = confusion_matrix(y_test,prediction)
print(cm)

0.7692307692307693

Con la seguente matrice di confusione

[[ 4 1 0 0] [ 4 7 0 0] [ 0 0 9 0] [ 1 2 1 10]]


Utilizzando i decision tree

!pip install -q -U tensorflow_decision_forests
!pip install -q -U dtreeviz
import tensorflow_decision_forests as tfdf

import tensorflow as tf

import os
import numpy as np
import pandas as pd
import tensorflow as tf
import math

import dtreeviz

from matplotlib import pyplot as plt
from IPython import display

import logging
logging.getLogger('matplotlib.font_manager').setLevel(level=logging.CRITICAL)

display.set_matplotlib_formats('retina') # generate hires plots

np.random.seed(1234)
def split_dataset(dataset, test_ratio=0.30, seed=1234):
  np.random.seed(seed)
  test_indices = np.random.rand(len(dataset)) < test_ratio
  return dataset[~test_indices], dataset[test_indices]
df_spettri = pd.read_csv("/content/totale2.csv")
df_spettri.head(3)
spettri_label = "Classe"   # Name of the classification target label
classes = list(df_spettri[spettri_label].unique())
df_spettri[spettri_label] = df_spettri[spettri_label].map(classes.index)

print(f"Target '{spettri_label}'' classes: {classes}")
df_spettri.head(3)
# Split into training and test sets
train_ds_pd, test_ds_pd = split_dataset(df_spettri)
print(f"{len(train_ds_pd)} examples in training, {len(test_ds_pd)} examples for testing.")

# Convert to tensorflow data sets
train_ds = tfdf.keras.pd_dataframe_to_tf_dataset(train_ds_pd, label=spettri_label)
test_ds = tfdf.keras.pd_dataframe_to_tf_dataset(test_ds_pd, label=spettri_label)
cmodel = tfdf.keras.RandomForestModel(verbose=0, random_seed=1234)
cmodel.fit(train_ds)
cmodel.compile(metrics=["accuracy"])
cmodel.evaluate(test_ds, return_dict=True, verbose=0)
# Tell dtreeviz about training data and model
spettri_features = [f.name for f in cmodel.make_inspector().features()]
viz_cmodel = dtreeviz.model(cmodel,
                           tree_index=3,
                           X_train=train_ds_pd[spettri_features],
                           y_train=train_ds_pd[spettri_label],
                           feature_names=spettri_features,
                           target_name=spettri_label,
                           class_names=classes)
viz_cmodel.view(scale=1.75)

si ha una accuracy di circa 0.7




Debugger integrato ESP32S3

Aggiornamento In realta' il Jtag USB funziona anche sui moduli cinesi Il problema risiede  nell'ID USB della porta Jtag. Nel modulo...