venerdì 15 marzo 2019

Bare Metal C64 con Raspberry 3D Case

Sto giocando con BMC64 e, non volendo sacrificare un case di C64 funzionante, mi sono adattato con questo caso stampato in 3D

I colori sono quelli del VIC 20 ma va benissimo cosi'




giovedì 14 marzo 2019

Regolatori di tensione per Arduino

Per provare un pannello solare con una batteria ho preso un regolatore di tensione (il pannello solare esce a circa 19 V mentre la batteria e' da 12 V



 https://www.amazon.it/gp/product/B01EL9IG6K/ref=oh_aui_search_asin_title?ie=UTF8&psc=1
Per prova ho testato un LM317, un regolatore di tensione lineare. Il componente ha una Vdroput di 3V per cui se si applica una tensione di Vin di 12 V non potremo ottenere piu' di 9 V dal Vout

Per pilotare il componente si usano 2 resistenze


Per il calcolo della Vout si usa la formula

R2 = [(Vin/1.25)-1]* R1

Per esempio se si vuole ottenere una Vout di 5v data un R1 di 220 Ohm si dovra' impostare una R2 di 660 Ohm

Questi componenti non sono molto efficienti e dissipano la corrente in eccedenza come calore.
Prendendo una Arduino ed una sorgente di una batteria di 9V si ha che la potenza dissipata e' data da

W = (9-5)V*0.04A = 0.16W

E' necessario usare un dissipatore termico per valori superiori a 0.25W
usando il rapporto di 19°C/W si ha che l'integrato si riscalda di circa 3°C


Regolatore tensione Arduino Uno

Ma ha senso usare un regolatore di tensione esterno su Arduino Uno??
La Arduino Uno usa un regolatore di tensione LDO NCP1117ST50T3G che eroga una tensione fissa di 5V con un dropout di soli 1.2V ed una tensione di Vin di 20 V.
Il pannello solare eroga in piena insolazione 19.7 V.....e' molto al limite forse troppo (le tensioni consigliate per il regolatore di tensione sono 7-12V max 19V) ma in ogni caso e' integrato un circuito di protezione


Filtro Kalman e tempo di campionamento

Stavo continuando a provare questa libreria del filtro Kalman per MPU quanto, per risparmiare spazio su disco, ho provato a modificare il tempo di campionamento da 20 ms ad 1 secondo ed ' accaduto qualcosa che non mi aspettavo




Tempo di campionamento 1 sec

Nr campioni : 5085
Media : -0.35
Range : 7.44
Std : 0.21
Varianza : 0.044
Skewness : -14.8

Tempo di campionamento 0.02 sec

Nr campioni : 67889
Media : -0.35
Range : 0.33
Std : 0.0.37
Varianza : 0.0014
Skewness : -0.011

Come si vede il valore medio e' comparabile ma la standard deviation e' decisamente peggiore con il tempo di campioanmento di 1 secondo

martedì 12 marzo 2019

Google Car Agosto 2018

Ad agosto avevo avvistato la Google Car a giro per Firenze



ed adesso mi sono ritrovato (macchina arancione) in Google Street View...anche se non e' la prima volta


MPU 6050 con filtro Kalman ed Arduino Uno

Ho trovato questa comoda libreria per interfacciare MPU6050 (un accelerometro-giroscopio triassiale) con Arduino e processare i dati con il filtro di Kalman in tempo reale

(Per un articolo di data fusion sui dati di accelerometro e giroscopio si puo' andare a questo link applicato ai filtri Kalman)


La connesione tra MPU 6050 (anche chiamato GY 521) avviene sul canale I2C. E' quindi collegare Vcc a 3,3V, GND e SDA su pin Arduino A4 ed SCL su pin Arduino A5



Ho acquisito un po' di misure e le ho poi processate con Octave. Si vede chiaramente che il valore medio dell'angolo di roll e' comparabile tra le misure con e senza filtro di Kalman...il dato che varia in modo sensibile e' la standard deviation (le misure sono state effettuate a sensore fermo e spengendo e riaccendendo il sensore per evitare un eventuale drift del giroscopio)

Le misure sono angoli di roll espressi in gradi decimali

Set senza filtro Kalman
Nr misure : 7572
Media : -6.76
Range : 2.15
Stdev : 0.2
Varianza : 0.041
Skewness : 0.054



Set 1 con fil tro Kalman
Nr misure : 28013
Media : -6.71
Range : 0.46
Stdev : 0.05
Varianza : 0.003
Skewness : -0.051


Set 2 con fil tro Kalman
Nr misure  : 11844
Media : -6.71
Range : 0.46
Stdev : 0.05
Varianza : 0.003
Skewness : -0.12



Set 3 con fil tro Kalman
Nr misure : 5545
Media : -6.76
Range : 0.35
Stdev : 0.05
Varianza : 0.0025
Skewness : 0.14



venerdì 8 marzo 2019

Internet Yellow Pages

Un reperto del passato, un libro in cui sono elencati e descritti siti Web ...e direi che Google e prima ancora Altavista erano gia' disponibili




AStable NE555

Stavo giocando con la generazione di suoni con una Arduino ed un altoparlante (metto sotto il semplice progettino) quando mi e' venuto in mente....perche' non farlo senza microcontrollore ma con la sola elettronica analogica e quindi con un NE555

Circuito NE555 Astable

Fonte Wikipedia





Accrescere il valore del condensatore C  al di sotto del potenziometro riduce la frequenza aumentando il periodo.

Accrescere il valore della parte superiore R1 della resistenza variabile (parte superiore guardando il grafico sopra) aumenta il periodo di segnale alto (ma non modifica il periodo di segnale basso

Accrescere il valore della parte inferiore R2 della resistenza variabile aumenta il periodo di segnale basso e decrementa il duty cycle (ovvero il rapporto tra stato alto e stato basso fino ad un minimo del 50%)

il tempo di stato 1 sara' pari a T_alto = 0.693(R1+R2)*C
il tempo di stato 0 sara' pari a T_alto = 0.693*R2*C
per avere un periodo alto uguale al periodo basso R1 deve essere posto a zero

La frequenza e' calcolata come f=1.4/((R1+2R2)*C)

https://dlb.sa.edu.au/rehsmoodle/file.php/466/kpsec.freeuk.com/555timer.htm


per avere una frequenza di 440 Hz si deve porre di circa 164 nF (questo il calcolatore)



Ovviamente al posto del voltmetro va messo un altoparlante

Il consumo di NE555 e' di circa 15 mA

E se si volesse scendere con duty cyle inferiori al 50%??? (ovvero se invece di generare un suono volessi un interruttore che si apre ad determinati intervalli per un breve periodo di tempo)

Si devono inserire due diodi attorno al potenziometro

Circuito NE555 Astable con duty cycle inferiore al 50%



Un sostituto a basso consumo di NE555 e' ICM7555 che funziona anche a 1.5 V con un consumo di 60 microA

Configurazione Astable di ICM7555


Se si vuole generare un suono con Arduino basta lo script sottostante e collegare il jack audio al GND ed al PIN 11 per avere una nota di 250 Hz

---------------------------------------------------
void setup() {
  pinMode(11, OUTPUT);
}
void loop() {
  digitalWrite(11, HIGH);  
  delay(2);                       
  digitalWrite(11, LOW);     
 delay(2);                  
}
---------------------------------------------------



Ma come fare ad avefe note piu' acute con periodo inferiore al microsecondo. Si possono usare le librerie Mozzi e Tone che, giocando sui timer TCRR0A eTCRR0B permettono di ottenere variazioni piu' brevi dello stato delle porte digitali (a 16 MHz il limite teorico di un clock del processore e' di 62.5 nanosecondi)

Debugger integrato ESP32S3

Aggiornamento In realta' il Jtag USB funziona anche sui moduli cinesi Il problema risiede  nell'ID USB della porta Jtag. Nel modulo...