giovedì 28 marzo 2024

Retrain Yolo8 con rifiuti su spiaggia

Ho provato a fare il retraining di Yolo 8 con rifiuti spiaggiati usando il dataset al link sottostante

 https://universe.roboflow.com/baeulang/ocean_trash

 


 Il dataset e' composto da 1133 immagini

Il train e' stato eseguito sull' NVidia Geforce 940M su mio portatile Debian. Per questo motivo ho dovuto usare il modello nano e ridurre le batch da 16 a 8 altrimenti saturavo completamente il Gb di ram della scheda video


yolo task=detect mode=train model=yolov8n.pt imgsz=640 data=/home/luca/yolo8/trash/data.yaml epochs=10 batch=4 name=yolov8n_trash


 

yolo detect val model='/home/luca/yolo8/runs/detect/yolov8n_trash4/weights/best.pt'  imgsz=640 data=/home/luca/yolo8/trash/data.yaml


Matrice di confusione




a questo punto ho usato il file addestrato per riconoscere immagini che non sono state inserite nella fase di train

yolo predict model='/home/luca/yolo8/runs/detect/yolov8n_trash4/weights/best.pt' source='/home/luca/yolo8/trash/test/images/CD_9581_jpg.rf.ac853dd458749924fe0891cd4c5f9a21.jpg' imgsz=640

 

Questo e' un esempio di riconoscimento


Il risultato non e' eccezionale ma c'e' considerare che e' stato utilizzato come base il modello nano



Nessun commento:

Posta un commento

Physics informed neural network Fukuzono

Visto che puro ML non funziona per le serie tempo di cui mi sto occupando ed le regressioni basate su formule analitiche mostrano dei limiti...