venerdì 11 aprile 2014

3D Scanner con Kinect

Per completare i testi con il Kinect ho provato a creare uno scanner 3D.
L'oggetto e' stata la caffettiera sotto riportata il cui centro di rotazione e' stato posto a 65 cm dal Kinect ed e' stato ripreso da 4 fotogrammi ruotando ogni volta  l'oggetto di 90°
Ovviamente e' stata una prova casalinga e ci sono forti errori di allineamento tra il sensore Kinect e l'asse di rotazione.

L'oggetto reale


La sua scansione (da notare che era posto sopra una scatola)


Per l'acquisizione e' stato usato il seguente script
-------------------------------------------------
from openni import *
import time
import pickle
import numpy as np
import Image
import scipy


ctx = Context()
ctx.init()

# Create a depth generator
depth = DepthGenerator()
depth.create(ctx)

# Set it to VGA maps at 30 FPS
depth.set_resolution_preset(RES_VGA)
depth.fps = 30

# Start generating
ctx.start_generating_all()


# Update to next frame
nRetVal = ctx.wait_one_update_all(depth)

depthMap = depth.map
depthMap2 = np.array(depthMap)
f = open("ca_2700.txt","w+b")
pickle.dump(depthMap2,f)
f.close()
-------------------------------------------------

i vari file salvati con pickle sono stati poi trattati con i seguenti programmi (uno ogni 90°, di fatto l'immagine viene centrata e vengono filtrati solo i dati > 0 ed inferiori a 70 cm)
--------------------------------
#!/usr/bin/python
import pickle
import numpy as np
import Image

f = open("ca_000.txt")
data = pickle.load(f)
f.close()

t = 0

for y in range(0,480):
for x in range (0,640):
if ((data[t] < 700) and (data[t]>0)):
print str(x-320)+","+str(y-240)+","+str(660-data[t])
t = t + 1
--------------------------------
#!/usr/bin/python
import pickle
import numpy as np
import Image

f = open("ca_180.txt")
data = pickle.load(f)
f.close()

t = 0

for y in range(0,480):
for x in range (0,640):
if ((data[t] < 700) and (data[t]>0)):
print str(x-320)+","+str(y-240)+","+str(-(660-data[t]))
t = t + 1
--------------------------------
#!/usr/bin/python
import pickle
import numpy as np
import Image

f = open("ca_090.txt")
data = pickle.load(f)
f.close()

t = 0

for y in range(0,480):
for x in range (0,640):
if ((data[t] < 700) and (data[t]>0)):
print str(660-data[t]) + "," + str(y-240) + "," + str(x-320) #non funziona 
t = t + 1
--------------------------------
#!/usr/bin/python
import pickle
import numpy as np
import Image

f = open("ca_090.txt")
data = pickle.load(f)
f.close()

t = 0

for y in range(0,480):
for x in range (0,640):
if ((data[t] < 700) and (data[t]>0)):
print str(-(660-data[t])) + "," + str(y-240) + "," + str(x-320)  
t = t + 1
--------------------------------

L'output e' stato dirottato su file testo che poi sono importati in Meshlab.

Nessun commento:

Posta un commento

Physics informed neural network Fukuzono

Visto che puro ML non funziona per le serie tempo di cui mi sto occupando ed le regressioni basate su formule analitiche mostrano dei limiti...